3.已知x∈R且x≠1,比較兩式1+x與$\frac{1}{1-x}$的值的大小.

分析 作差對(duì)x分類討論即可得出.

解答 解:1+x-$\frac{1}{1-x}$=$\frac{{x}^{2}}{x-1}$,
因此x>1時(shí),1+x>$\frac{1}{1-x}$,
x<1時(shí),1+x<$\frac{1}{1-x}$.

點(diǎn)評(píng) 本題考查了作差法比較兩個(gè)數(shù)的大小關(guān)系,考查了分類討論方法、推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),$f(x)={2^x}-{x^{\frac{1}{3}}}$,求當(dāng)x>0時(shí)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若loga3b=-1,則a+b的最小值為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知命題“任意x∈R,x2+2ax+a>0”是真命題,那么實(shí)數(shù)a的取值范圍是0<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.p:$\left\{\begin{array}{l}a>2\;,\;\;\\ b=3\;.\end{array}\right.$是q:$\left\{\begin{array}{l}a+b>5\;,\;\;\\ ab>6.\end{array}\right.$成立的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.2011年9月1日起,我國實(shí)行新個(gè)人所得稅率,起征點(diǎn)為3500元,超過部分實(shí)行超額累進(jìn)稅率.如果月工資20000元,則應(yīng)交稅為3120元.
應(yīng)納銳收入(元)稅率(%)
不超過1500元3
超過1500元至4500元10
超過4500元至9000元20
超過9000元至35000元25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在程序框圖中,已知:${f_0}(x)=x{e^x}$,則輸出的是2012ex+xex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x2+ax-lnx在[1,2]上是減函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-1]B.$(-∞,-\frac{7}{2}]$C.$[-\frac{7}{2},-1)$D.$[-\frac{7}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f (x)=$\left\{{\begin{array}{l}{x-3,x≥10}\\{f[f(x+7)],x<10}\end{array}}\right.$,則f(6)的值( 。
A.8B.7C.6D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案