2.某班有34位同學(xué),座位號記為01,02,…34,用如圖的隨機(jī)數(shù)表選取5組數(shù)作為參加青年志愿者活動的五位同學(xué)的座號.選取方法是從隨機(jī)數(shù)表第一行的第6列和第7列數(shù)字開始,由左到右依次選取兩個數(shù)字,則選出來的第4個志愿者的座號是( 。
A.23B.09C.02D.16

分析 根據(jù)隨機(jī)數(shù)表,依次進(jìn)行選擇即可得到結(jié)論.

解答 解:從隨機(jī)數(shù)表第1行的第6列和第7列數(shù)字開始由左到右依次選取兩個數(shù)字中小于34的編號依次為21,32,09,16,其中第4個為16.
故選:D

點(diǎn)評 本題主要考查簡單隨機(jī)抽樣的應(yīng)用,正確理解隨機(jī)數(shù)法是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知實(shí)數(shù)a和b(b≠0),若不等式|a+2b|+|a-2b|≤M•|b|有解,記實(shí)數(shù)M的最小值為m.
(1)求m的值;
(2)解不等式|x-1|+|x-3|≤m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ex(sinx+cosx)+a(a為常數(shù)).
(Ⅰ)已知a=-3,求曲線y=f(x)在(0,f(0))處的切線方程;
(Ⅱ)當(dāng)0≤x≤π時,求f(x)的值域;
(Ⅲ)設(shè)g(x)=(a2-a+10)ex,若存在x1,x2∈[0,π],使得|f(x1)-g(x2)|<13-e${\;}^{\frac{π}{2}}$成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.空間兩條不重合的直線a,b在同一平面α上的射影分別為兩條不重合的直線m,n,則“a∥b”是“m∥n”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且asinA+bsinB-csinC=bsinA.
(Ⅰ)求∠C的度數(shù);
(Ⅱ)若c=2,求AB邊上的高CD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.計算Cn1+2•Cn22+…+n•Cnn2n-1=n(1+2)n-1,可以采用以下方法:
構(gòu)造恒等式Cn0+Cn12x+Cn222x2+…+Cnn2nxn=(1+2x)n
兩邊對x求導(dǎo),得Cn12+2•Cn222x+…+n•Cnn2nxn-1=2n(1+2x)n-1,
在上式中令x=1,得Cn1+2•Cn22+…+n•Cnn2n-1=n(1+2)n-1=n•3n-1,
類比上述計算方法,計算Cn12+22Cn222+32Cn323+…+n2Cnn2n=2n(2n+1)3n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx-$\frac{1}{2}$a(x-1)(a∈R).
(Ⅰ)若a=-2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若不等式f(x)<0對任意x∈(1,+∞)恒成立.
(ⅰ)求實(shí)數(shù)a的取值范圍;
(ⅱ)試比較ea-2與ae-2的大小,并給出證明(e為自然對數(shù)的底數(shù),e=2.71828).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$)-cos(x+$\frac{π}{3}$),g(x)=2sin2$\frac{x}{2}$.
(Ⅰ)求函數(shù)y=f(x)+g(x)在[0,π]上的單調(diào)區(qū)間;
(Ⅱ)在△ABC中,A為銳角,且角A、B、C所對的邊分別為a、b、c,若a=$\sqrt{5}$,f(A)=$\frac{3\sqrt{5}}{4}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.三棱錐O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,若OA=OB=a,OC=b,D是該三棱錐外部(不含表面)的一點(diǎn),給出下列四個命題,
①存在無數(shù)個點(diǎn)D,使OD⊥面ABC;
②存在唯一點(diǎn)D,使四面體ABCD為正三棱錐;
③存在無數(shù)個點(diǎn)D,使OD=AD=BD=CD;
④存在唯一點(diǎn)D,使四面體ABCD有三個面為直角三角形.
其中正確命題的序號是①④.

查看答案和解析>>

同步練習(xí)冊答案