將函數(shù)y=
1
4
sinx+
3
4
cosx(x∈R)的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是(  )
A、
π
12
B、
π
6
C、
π
3
D、
6
考點(diǎn):兩角和與差的正弦函數(shù),函數(shù)y=Asin(ωx+φ)的圖象變換
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:用兩角和與差的三角函數(shù)化簡(jiǎn)函數(shù)y=
1
2
cos(x-
π
6
),通過圖象的平移,得到函數(shù)的表達(dá)式,由函數(shù)圖象關(guān)于y軸對(duì)稱,函數(shù)在y軸處取得函數(shù)的最值,求解即可
解答: 解:函數(shù)y=
1
4
sinx+
3
4
cosx=
1
2
cos(x-
π
6
),圖象向左平移m個(gè)單位可得y=
1
2
cos(x+m-
π
6
),
根據(jù)偶函數(shù)的性質(zhì):圖象關(guān)于y軸對(duì)稱,故可得此函數(shù)在y軸處取得函數(shù)的最值,
即cos(x+m-
π
6
)=±1,
解得,m-
π
6
=kπ,
∴m=kπ+
π
6
,k∈Z,
∵m>0,
∴k=0時(shí),m的最小值為
π
6

故選:B.
點(diǎn)評(píng):本題將三角函數(shù)圖象向左平移m個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,求m的最小值.著重考查了三角函數(shù)的化簡(jiǎn)、三角函數(shù)圖象的對(duì)稱性等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從某500件產(chǎn)品中隨機(jī)抽取50件進(jìn)行質(zhì)檢,利用隨機(jī)數(shù)表法抽取樣本時(shí),先將這500件產(chǎn)品按001,002,003,…,500進(jìn)行編號(hào).如果從隨機(jī)數(shù)表第第7行第4列的數(shù)2開始,從左往右讀數(shù),則依次抽取的第4個(gè)個(gè)體的編號(hào)是
 
.(下面摘錄了隨機(jī)數(shù)表第6行至第8行各數(shù))
16 22 77 94 39  49 54 43 54 82  17 37 93 23 78  87 35 20 96 43  84 26 34 91 64
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 72 06 50 25  83 42 16 33 76
63 01 63 78 59  16 95 55 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P為△ABC的邊BC上的一點(diǎn),且滿足
AP
=
1
4
AB
-
3
4
CA
,則△ABP與△APC的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):cos2α(1+tan2α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中滿足:tanA•tanB=1+
3
(tanA+tanB),則角C等于( 。
A、
π
6
B、
π
3
C、
3
D、
5
6
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個(gè)數(shù)a=60.7,b=0.76,c=log0.76的大小順序是( 。
A、a<b<c
B、c<b<a
C、c<a<b
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sin(
π
2
-A)cosB>sinAsin(π-B),則△ABC是( 。
A、鈍角三角形
B、直角三角形
C、銳角三角形
D、等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的長(zhǎng)軸為6,短軸為4,則橢圓的標(biāo)準(zhǔn)方程是( 。
A、
x2
9
+
y2
4
=1
B、
y2
9
+
x2
4
=1
C、
x2
9
+
y2
4
=1或
y2
9
+
x2
4
=1
D、以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(1)證明:AE⊥平面PAD;
(2)取AB=2,若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為
6
2
,求二面角E-AF-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案