函數(shù)f(x)=lgx-
1
x
的零點(diǎn)個(gè)數(shù)為(  )
A、0B、1C、2D、3
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的定義域,再把函數(shù)轉(zhuǎn)化為對(duì)應(yīng)的方程,在坐標(biāo)系中畫出兩個(gè)函數(shù)y1=lgx,y2=
1
x
(x>0)的圖象求出方程的根的個(gè)數(shù),即為函數(shù)零點(diǎn)的個(gè)數(shù)
解答: 解:由題意,函數(shù)f(x)的定義域?yàn)椋?,+∞)
由函數(shù)零點(diǎn)的定義,f(x)在(0,+∞)內(nèi)的零點(diǎn)即是方程lgx-
1
x
=0的根.
令y1=lgx,y2=
1
x
(x>0),在一個(gè)坐標(biāo)系中畫出兩個(gè)函數(shù)的圖象:
由圖得,兩個(gè)函數(shù)圖象有1個(gè)交點(diǎn),
故方程有1個(gè)根,即對(duì)應(yīng)函數(shù)有1個(gè)零點(diǎn)
故選:B
點(diǎn)評(píng):本題考查了函數(shù)零點(diǎn)、對(duì)應(yīng)方程的根和函數(shù)圖象之間的關(guān)系,通過(guò)轉(zhuǎn)化和作圖求出函數(shù)零點(diǎn)的個(gè)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1-x2
+
x2-1
的定義域是( 。
A、{x|-1<x<1}
B、{x|x<-1,或x>1}
C、{x|0<x<1}
D、{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且∠F1PF2=
π
3
,記橢圓和雙曲線的離心率分別為e1,e2,則
1
e12
+
3
e22
的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

α,β是兩個(gè)平面,l是直線,給出以下四個(gè)命題:
①若l⊥α,α⊥β,則l∥β,
②若l∥α,α∥β,則l∥β,
③l⊥α,α∥β,則l⊥β,
④l∥α,α⊥β,則l⊥β,
其中真命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+5與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A、B兩點(diǎn),且|AB|=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖正方體ABCD-A1B1C1D1中,E、F、G分別是BB1、AB、BC的中點(diǎn).
(1)證明:D1F⊥EG;
(2)證明:D1F⊥平面AEG;
(3)求cos<
AE
,
D1B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

令f(x)=2sinx+1,若集合A={x|
π
6
≤x≤
3
},B={x|-2+m<f(x)<2+m},若A?B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=tanx(
π
4
≤x≤
4
,且x≠
π
2
)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們把一系列向量ai(i=1,2,3,…n)按次序排成一列,稱之為向量列,記作{
an
}.已知非零的向量列滿足:
a1
=(x1y1)
,
an
=(xn,yn)=
1
2
(xn-1-yn-1,xn-1+yn-1)
(n≥2).
(1)證明數(shù)列{|
an
|}
是等比數(shù)列;
(2)設(shè)θn表示向量
an-1
,
an
的夾角的弧度數(shù)(n≥2),若bn=
π
4n(n-1)θn
,Sn=b2+b3+…+bn,求Sn
(3)設(shè)
a1
=(1,2)
,把
a1
,
a2
,…,
an
中所有與
a1
共線的向量按原來(lái)的順序排成一列,記為
d1
,
d2
,…,
dn
,…,令
ODn
=
d1
+
d2
+…+
dn
,O為坐標(biāo)原點(diǎn),求點(diǎn)列{Dn}的極限點(diǎn)D的坐標(biāo).(注:若點(diǎn)Dn坐標(biāo)為(tn,vn),
lim
n→∞
tn
=t,
lim
n→∞
vn
=v,則點(diǎn)D(t,v)為點(diǎn)列{Dn}的極限點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案