13.已知正數(shù)a,b滿足$\frac{1}{2a+4b}$+$\frac{1}{2a+b}$=1,則a+b的最小值是$\frac{1}{6}$(3+2$\sqrt{2}$).

分析 設2a+4b=m,2a+b=n,問題轉化為正數(shù)mn滿足$\frac{1}{m}$+$\frac{1}{n}$=1,求$\frac{1}{6}$m+$\frac{1}{3}$n的最小值,由基本不等式可得.

解答 解:設2a+4b=m,2a+b=n,
解得a=-$\frac{1}{6}m+\frac{2}{3}n$,b=$\frac{1}{3}$(m-n),
則正數(shù)m,n滿足$\frac{1}{m}$+$\frac{1}{n}$=1,
∴a+b=-$\frac{1}{6}m+\frac{2}{3}n$+$\frac{1}{3}$(m-n)
=$\frac{1}{6}$m+$\frac{1}{3}$n=$\frac{1}{6}$(m+2n)($\frac{1}{m}$+$\frac{1}{n}$)
=$\frac{1}{6}$(3+$\frac{2n}{m}$+$\frac{m}{n}$)≥$\frac{1}{6}$(3+2$\sqrt{2}$)
當且僅當$\frac{2n}{m}$=$\frac{m}{n}$時取等號.
故答案為:$\frac{1}{6}$(3+2$\sqrt{2}$)

點評 本題考查基本不等式求最值,換元并整體代換是解決問題的關鍵,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.在△ABC中,A(-1,0),B(1,0),若△ABC的重心G和垂心H滿足GH平行于x軸(G.H不重合),
(I)求動點C的軌跡Γ的方程;
(II)已知O為坐標原點,若直線AC與以O為圓心,以|OH|為半徑的圓相切,求此時直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知a1,a2,a3,…,ak是有限項等差數(shù)列,且a4+a7+a10=17,a4+a5+a6+a7+a8+a9+a10+a11+a12+a13+a14=77,若ak=13,則k的值是18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$x2+lnx-mx(m>0),求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.曲線f(x)=f′(2)lnx-f(1)x+2x2在點(1,f(1))處的切線方程為15x+y-14=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知正三棱錐P-ABC,若M是側棱PA的三分點,且PB⊥CM,AB=$\sqrt{2}$,則三棱錐P-ABC外接球的體積為( 。
A.2$\sqrt{3}π$B.$\frac{π}{2}$C.$\frac{\sqrt{3}}{2}π$D.$\frac{\sqrt{3}}{4}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.一個等比數(shù)列的第7項是12,第9項是18,求它的第8項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,已知平面直角坐標系中點Q(2,0)和圓O:x2+y2=1,動點M到圓O的切線長|MN|與|MQ|相等,求動點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若橢圓的中心在原點,焦點在x軸上,離心率為$\frac{1}{2}$,焦距為6,則該橢圓的方程是( 。
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}=1$C.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{9}=1$D.$\frac{{y}^{2}}{36}+\frac{{x}^{2}}{27}=1$

查看答案和解析>>

同步練習冊答案