5.一個等比數(shù)列的第7項是12,第9項是18,求它的第8項.

分析 由題意和等比中項可得.

解答 解:由題意可得等比數(shù)列{an}中a7=12,a9=18,
∴它的第8項a8=±$\sqrt{{a}_{7}•{a}_{9}}$=±$\sqrt{12×18}$=±6$\sqrt{6}$

點評 本題考查等比數(shù)列的通項公式和等比中項,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.在△ABC中,R為△ABC外接圓半徑,若$\frac{a}{cosA}$=$\frac{cosB}$,則△ABC是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設$\overrightarrow{a}$=(1,2,0),$\overrightarrow$=(1,0,1).則“$\overrightarrow{c}$=($\frac{2}{3}$,-$\frac{1}{3}$,-$\frac{2}{3}$)”是“$\overrightarrow{c}$⊥$\overrightarrow{a}$,$\overrightarrow{c}$⊥$\overrightarrow$且$\overrightarrow{c}$為單位向量”的充分不必要條件(填充要,充分不必要,必要不充分).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知正數(shù)a,b滿足$\frac{1}{2a+4b}$+$\frac{1}{2a+b}$=1,則a+b的最小值是$\frac{1}{6}$(3+2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,AB=5,BC=8,∠ABC=60°,D是其外接圓$\widehat{AC}$上一點,且CD=3,則AD的長為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知直線l過點(0,1),且圓(x-1)2+(y+1)2=1上有且只有一個點到直線1的距離為1,則直線l的方程為y=1,或4x-3y+3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知cosα=-$\frac{15}{17}$,α∈($π,\frac{3}{2}π$),求sin2α,cos$\frac{α}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知橢圓G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,經(jīng)過左焦點F1(-1,0)的直線l與橢圓G相交于A,B兩點,與y軸相交于C點,且點C在線段AB上.
(Ⅰ)求橢圓G的方程;
(Ⅱ)若|AF1|=|CB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)$f(x)=\sqrt{2}cos({x+\frac{π}{4}})$,x∈R.
(1)求函數(shù)f(x)的最小正周期和值域;
(2)求函數(shù)$f(x)=\sqrt{2}cos({x+\frac{π}{4}})$的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案