4.求函數(shù)f(x)=$\sqrt{2{x}^{2}-x+3}$+$\sqrt{{x}^{2}-x}$的最小值$\sqrt{3}$.

分析 由題意得x2-x≥0,從而可得2x2-x+3=x2-x+x2+3≥3;當(dāng)且僅當(dāng)x=0時(shí),等號同時(shí)成立;從而求最小值.

解答 解:由題意得,
x2-x≥0,
則2x2-x+3=x2-x+x2+3≥3;
(當(dāng)且僅當(dāng)x=0時(shí),等號同時(shí)成立);
∴f(x)=$\sqrt{2{x}^{2}-x+3}$+$\sqrt{{x}^{2}-x}$≥$\sqrt{3}$+0=$\sqrt{3}$;
∴函數(shù)f(x)=$\sqrt{2{x}^{2}-x+3}$+$\sqrt{{x}^{2}-x}$的最小值為$\sqrt{3}$;
故答案為:$\sqrt{3}$.

點(diǎn)評 本題考查了函數(shù)的最小值的求法,注意等號同時(shí)成立,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x3+bx2+cx(b,c∈R)的圖象在點(diǎn)x=1處的切線方程為6x-2y-1=0,f′(x)為f(x)的導(dǎo)函數(shù).
(Ⅰ)求b,c的值;
(Ⅱ)設(shè)g(x)=aex(a∈R)(e=2.71828…是自然對數(shù)的底數(shù)),若存在x0∈[0,2],使g(x0)=f′(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}滿足:a1=8,公差d=-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記Sn為數(shù)列{an}的前n項(xiàng)和,求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的上、下焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為雙曲線下支上一點(diǎn),且sin∠PF1F2=$\frac{3}{5}$,若線段PF1的垂直平分線恰好經(jīng)過F2,則雙曲線的漸近線方程為( 。
A.4x±3y=0B.3x±4y=0C.3x±5y=0D.5x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列函數(shù)的最大值和最小值.
(1)y=$\sqrt{1-\frac{1}{2}cosx}$
(2)y=3+2cos(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-1)2+y2=$\frac{1}{4}$外,且對C1上任意一點(diǎn)M,M到直線x=-$\frac{1}{2}$的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(1)求曲線C1的方程;
(2)已知直線l過定點(diǎn)P(-2,1),斜率為k,當(dāng) k為何值時(shí),直線l與曲線C1只有一個(gè)公共點(diǎn)點(diǎn);有兩個(gè)公共點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若拋物線y2=2px的焦點(diǎn)與橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1的右焦點(diǎn)重合,則P的值為( 。
A.-2B.2C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過點(diǎn)M(-1,1)作斜率為$\frac{1}{2}$的直線與橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)相交于A,B兩點(diǎn),若M是線段AB的中點(diǎn),則橢圓C的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.提高五愛隧道的車輛通行能力可改善附近路段高峰期間的交通狀況,現(xiàn)將隧道內(nèi)的車流速度記作υ(單位:千米/小時(shí)),車流密度記作x(單位:輛/千米).研究表明:當(dāng)隧道內(nèi)的車流密度達(dá)到180輛/千米時(shí),會造成該路段道路堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度不超過30輛/千米時(shí),車流速度為50千米/小時(shí);當(dāng)30≤x≤180時(shí),車流速度υ是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0<x≤180時(shí),求函數(shù)υ(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多少時(shí),車流量(單位時(shí)間內(nèi)通過隧道內(nèi)某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x•υ(x)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案