9.A={x|x2-4=0},B={x|x-2=0},求A∩B,A∪B.

分析 清楚集合A,B,然后求解交集與并集即可.

解答 解:A={x|x2-4=0}={-2,2},B={x|x-2=0}={2},
A∩B={2},
A∪B={-2,2}.

點(diǎn)評(píng) 本題考查集合的基本運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如果復(fù)數(shù)z=$\frac{6-bi}{1+2i}$(其中i為虛數(shù)單位,b為實(shí)數(shù))的實(shí)部和虛部互為相反數(shù).
①求z.
②求|z|.
③負(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第幾象限.
④若z(m+i)是純虛數(shù),求m的值.
⑤求($\frac{z}{\overline{z}}$)2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=|x-a|+|x-2|.
(1)當(dāng)a=2時(shí),求不等式f(x)≤14的解集;
(2)若f(x)≥a2對(duì)x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若f(x)=ln($\sqrt{{4x}^{2}+1}$-2x)-1.則f(x)+f(-x)=( 。
A.-2B.0C.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓x2+y2-2x-4y+m=0與直線l:x+2y-4=0相交于M,N兩點(diǎn),且|MN|=$\frac{4}{\sqrt{5}}$,試求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=2asin(2x+$\frac{π}{6}$)+2a+b,x∈[$\frac{π}{4}$,$\frac{3π}{4}$],并且f(x)的最小值為-3,最大值為$\sqrt{3}$-1,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓的方程為x2+y2-2ax-b2=0,則過點(diǎn)P(a,b)的直線與圓有1或2個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.金紅石(TiO2)的晶胞如圖所示,圖中色點(diǎn)代表鈦原子,黑點(diǎn)代表氧原子.長方體的8個(gè)頂點(diǎn)和中心是鈦原子,4個(gè)氧原子的位置是A(0.31a,0.31b,0),B(0.69a,0.69b,0),C(0.81a,0,0.5c)和D(0.19a,0.81b,0.5c).中心處鈦原子與A處氧原子間的距離叫做鍵長.當(dāng)a=b時(shí),試求鍵長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓$\frac{x^2}{3}+\frac{y^2}{2}=1$的焦點(diǎn)坐標(biāo)是( 。
A.(0,±1)B.(±1,0)C.$(0,±\sqrt{2})$D.$(±\sqrt{2},0)$

查看答案和解析>>

同步練習(xí)冊(cè)答案