已知cosα=
3
5
,0<α<π,求cos(α-
π
6
)的值.
考點:兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:利用同角三角函數(shù)基本關系式、兩角和差的余弦公式即可得出.
解答: 解:∵cosα=
3
5
,0<α<π,
sinα=
1-cos2α
=
4
5

∴cos(α-
π
6
)=cosαcos
π
6
+sinαsin
π
6
=
3
5
×
3
2
+
4
5
×
1
2
=
4+3
3
10
點評:本題考查了同角三角函數(shù)基本關系式、兩角和差的余弦公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l:3x-4y+2=0,A(2,-3)B(1,0)
(1)設過A于l平行的直線為m,過B于l垂直的直線為n,求兩直線方程
(2)若⊙C與l,m,n三直線都相切,且過坐標原點,求圓的方程
(3)若x,y滿足圓C方程,求下列代數(shù)式的取值范圍
y-2
x
,x2+y2+2x+2,3x+4y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正三棱錐P-ABC中,∠APB=∠BPC=∠CPA=90°,PA=PB=PC=a,AB的中點M,一小蜜蜂沿錐體側面由M 爬到C點,最短路程是(  )
A、
10
2
a
B、
3
2
a
C、
1
2
(2+
2
a)
D、
1
2
(1+
5
)a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線的離心率等于2,且與橢圓
x2
25
+
y2
9
=1有相同的焦點,
(1)求此雙曲線的標準方程.
(2)求此雙曲線的焦點到漸近線距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
36
+
y2
9
=1
,求以P(4,2)為中點的橢圓的弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+bln(x+2),其中a,b∈R,
(Ⅰ)當a=0時,y=f(x)在x=-1處的切線與直線y=2x+1垂直,求b的值;
(Ⅱ)當b=-3a,且a≠0時,討論函數(shù)y=f(x)的單調性;
(Ⅲ)若a>0,對于任意b∈[-1,0],不等式f(x)≤1在[-
3
2
,0]上恒成立,求a的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校高三某班的一次測試成績的莖葉圖、頻率分布直方圖及頻率分布表中的部分數(shù)據(jù)如下,請據(jù)此解答如下問題:
分組頻數(shù)頻率
[50,60)0.08
[60,70)7
[70,80)10
[80,90)
[90,100]2
(1)求班級的總人數(shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補充完整;
(3)用頻率分布直方圖求該班的平均分的估計值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若過拋物線y=4x2的焦點F作傾斜角為105°的直線交拋物線于AB,則AF•BF=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線E的標準方程是
x2
4
-y2=1
,則雙曲線E的漸進線的方程是
 

查看答案和解析>>

同步練習冊答案