6.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax2+2x+3在(-∞,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是[-$\sqrt{2}$,$\sqrt{2}$].

分析 根據(jù)函數(shù)單調(diào)遞增,則等價為f′(x)≥0恒成立,利用二次函數(shù)的圖象和性質(zhì)即可得到結(jié)論.

解答 解:若函數(shù)f(x)=$\frac{1}{3}$x3-ax2+2x+3在(-∞,+∞)上單調(diào)遞增,則f′(x)≥0恒成立,
即f′(x)=x2-2ax+2≥0恒成立,
則判別式△=4a2-4×2≤0,
即a2≤2,則-$\sqrt{2}$≤a≤$\sqrt{2}$,
故實(shí)數(shù)a的取值范圍是[-$\sqrt{2}$,$\sqrt{2}$],
故答案為:[-$\sqrt{2}$,$\sqrt{2}$].

點(diǎn)評 本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,將函數(shù)單調(diào)遞增轉(zhuǎn)化為f′(x)≥0恒成立是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集 U={1,2,3,4,5,6},集合A={1,3,5},B={1,4},那么 A∩∁UB=(  )
A.{3,5}B.{2,4,6}C.{1,2,4,6}D.{1,2,3,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,已知S2=3,且an+1=Sn+1,n∈N*,則a1=1;Sn=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x),g(x)在區(qū)間(0,5)內(nèi)導(dǎo)數(shù)存在,且有以下數(shù)據(jù):
x1234
f(x)2341
f′(x)3421
g(x)3142
g′(x)2413
則曲線f(x)在點(diǎn)(1,f(1))處的切線方程是y=3x-1;函數(shù)f(g(x))在x=2處的導(dǎo)數(shù)值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于虛軸對稱,且z1=1+i,則z2=( 。
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合A={y|y=x2+2x-1,x∈R},B={x|x2-1≤0},則A∩B=( 。
A.[-2,+∞)B.[-1,+∞)C.[-1,1]D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知O是坐標(biāo)原點(diǎn),點(diǎn)P(2,1),若M(x,y)滿足約束條件$\left\{\begin{array}{l}{x-3≤0}\\{y-a≤0}\\{x+y≥0}\end{array}\right.$,且$\overrightarrow{OP}•\overrightarrow{OM}$的最大值為10,則實(shí)數(shù)a的值是(  )
A.-3B.-10C.4D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.化簡z=$\frac{1+i}{1-i}$的結(jié)果是( 。
A.3B.1C.2+iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)、g(x):
x0123
f(x)2031
x0123
g(x)2103
則 f(g(2))=(  )
A.2B.1C.3D.0

查看答案和解析>>

同步練習(xí)冊答案