9.已知△ABC為鈍角三角形,命題“p:對(duì)△ABC的任意兩個(gè)內(nèi)角α,β,都有cosα+cosβ>0”,下列結(jié)論正確的是( 。
A.¬p:對(duì)△ABC的任意兩個(gè)內(nèi)角α,β,都有cosα+cosβ≤0:假命題
B.¬p:對(duì)△ABC中存在兩個(gè)內(nèi)角α,β,都有cosα+cosβ≤0:真命題
C.¬p:對(duì)△ABC的任意兩個(gè)內(nèi)角α,β,都有cosα+cosβ≤0:真命題
D.¬p:對(duì)△ABC中存在兩個(gè)內(nèi)角α,β,都有cosα+cosβ≤0:假命題

分析 利用命題否定的寫法,即可得出結(jié)論.

解答 解:∵p:對(duì)△ABC的任意兩個(gè)內(nèi)角α,β,都有cosα+cosβ>0,
∴¬p:對(duì)△ABC中存在兩個(gè)內(nèi)角α,β,都有cosα+cosβ≤0:假命題,理由是α+β<180°,α<180°-β,
∴cosα>cos(180°-β),∴cosα+cosβ>0
故選:D.

點(diǎn)評(píng) 本題考查命題否定,考查學(xué)生分析解決問(wèn)題的能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于點(diǎn)E,OF⊥AC于點(diǎn)F.
(1)求證:OF∥BC;
(2)若EB=5cm,CD=10$\sqrt{3}$cm,求OE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知sin(π-α)-sin($\frac{3π}{2}$+α)=$\frac{\sqrt{2}}{3}$($\frac{3π}{2}$<α<2π),求:
(1)sin3α+cos3α的值;
(2)sin4α-cos4α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.?dāng)?shù)列{an}滿足,a1=2,$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+2(n≥2),則數(shù)列{an}的通項(xiàng)公式an=$\frac{2}{4n-3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知正項(xiàng)等比數(shù)列{an}滿足a1,2a2,a3+6成等差數(shù)列,且a42=9a1a5,
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(log${\;}_{\sqrt{3}}$an+1)•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在平面直角坐標(biāo)系中,已知點(diǎn)M(0,-1),N(0,1),動(dòng)點(diǎn)P滿足PM=$\sqrt{2}$PN.
(1)求點(diǎn)P的軌跡C1的方程,并說(shuō)明是什么曲線
(2)二次函數(shù)f(x)=x2+2x-3的圖象與兩坐標(biāo)軸交于三點(diǎn),過(guò)這三點(diǎn)的圓記為C2,求證C1、C2有兩個(gè)公共點(diǎn),并求出這兩個(gè)公共點(diǎn)間距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.當(dāng)二次函數(shù)y=x2-2x-7的圖象在直線y=1的上方時(shí),自變量x的取值范圍是(-∞,-2)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(x,-4),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn).
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)求證:平面BCE⊥平面CDE;
(Ⅲ)若AB=1,求四棱錐C-ABED的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案