14.有一塊直角三角形木板,如圖所示,∠C=90°,AB=5cm,BC=3cm,AC=4cm.根據(jù)需要,要把它加工成一個面積最大的正方形木板,設(shè)計一個方案,應(yīng)怎樣裁才能使正方形木板面積最大,并求出這個正方形木板的邊長.

分析 由題意,設(shè)出正方形邊長為a,根據(jù)勾股定理建立關(guān)系,利用相似三角形的性質(zhì)求解邊長的關(guān)系,即可求解最大值即可.

解答 解:如圖(1)所示,設(shè)正方形DEFG的邊長為x cm,過點C作CM⊥AB于M,交DE于N,
因為S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CM,
所以AC•BC=AB•CM,即3×4=5•CM.所以CM=$\frac{12}{5}$.
因為DE∥AB,所以△CDE∽△CAB.
所以$\frac{CN}{CM}=\frac{DE}{AB}$,即$\frac{\frac{12}{5}-x}{\frac{12}{5}}=\frac{x}{5}$
所以x=$\frac{60}{37}$
如圖(2)所示,設(shè)正方形CDEF的邊長為y cm,因為EF∥AC,所以△BEF∽△BAC.
∴$\frac{BF}{BC}=\frac{EF}{AC}$,$\frac{3-x}{3}=\frac{y}{4}$.
∴y=$\frac{12}{7}$.
∵x=$\frac{60}{37}$,y=$\frac{12}{7}$,
∴x<y.
所以當(dāng)按圖(2)的方法裁剪時,正方形面積最大,其邊長為$\frac{12}{7}$cm.

點評 本題考查的是相似三角形在實際生活中的應(yīng)用,能根據(jù)題意畫出圖形,作出輔助線,再根據(jù)相似三角形的判定定理及性質(zhì)進(jìn)行解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x-a|.
(Ⅰ)當(dāng)a=1時,求不等式;|x-a|≥2
(Ⅱ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個各面均涂有油漆的正方體(魔方)被鋸成27個同樣大小的小正方體,將這些小正方體均勻的攪混在一起,現(xiàn)任意的取出一個小正方體,則事件“小正方體的三個面上有油漆”的概率是( 。
A.$\frac{12}{27}$B.$\frac{6}{27}$C.$\frac{1}{27}$D.$\frac{8}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|-2≤x≤1},集合B={x|(x-a)(x-a-4)>0}
(1)當(dāng)a=0時,求A∪B
(2)命題p:x∈A,命題q:x∈B,若p是q成立的充分不必要條件,則實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,x),若$\overrightarrow{a}$∥$\overrightarrow$,則x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作不太主動參加班級工作合計
學(xué)習(xí)積極性一般61925
合計242650
(1)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)判斷是否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.2016年春晚過后,為了研究演員上春晚次數(shù)與受關(guān)注度的關(guān)系,某站對其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關(guān)注度進(jìn)行了統(tǒng)計,得到如下數(shù)據(jù):
上春晚次數(shù)x(單位:次)246810
粉絲數(shù)量y(單位:萬人)10204080100
(Ⅰ)若該演員的粉絲數(shù)量y與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并就此分析:該演員上春晚11次時的粉絲數(shù)量;
(Ⅱ)若用$\frac{y_i}{x_i}$(i=1,2,3,4,5)表示統(tǒng)計數(shù)據(jù)時粉絲的“即時均值”(精確到整數(shù)):
(1)求這5次統(tǒng)計數(shù)據(jù)時粉絲的“即時均值”的方差;
(2)從“即時均值”中任選2組,求這兩組數(shù)據(jù)之和不超過15的概率.
參考公式:$\begin{array}{l}用最小二乘法求線性回歸方程系數(shù)公式:\\ \widehatb=\frac{{\sum_{i-1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i-1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i-1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i-1}^n{{{({{x_i}-\overline x})}^2}}}},\widehata=\overline y-b\overline x\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=sinx,x∈[0,2π].
(1)求f(x)的最大值及此時x的取值;
(2)求使$f(x)≥\frac{{\sqrt{2}}}{2}$的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某農(nóng)村合作聯(lián)社欲種植一種農(nóng)作物,有A、B兩個品種供選擇,根據(jù)前期在8塊實驗田中的種植試驗,得出A、B兩個品種的每公頃產(chǎn)量如下(單位:kg/hm2
品種A403397390404388400412406
品種B419403412418408423400413
(Ⅰ)分別求出品種A和品種B的每公頃產(chǎn)量的樣本平均數(shù)和方差;根據(jù)試驗結(jié)果,你認(rèn)為應(yīng)該種植哪一品種;
(Ⅱ)如果聯(lián)合社在一塊耕地上選擇種植A品種作物,其中種植成本為1000元,若根據(jù)試驗得知A品種作物的市場價格和這塊耕地上的產(chǎn)量均具有隨機性且互不影響,其具體情況如表:
A品種作物產(chǎn)量(kg)300500
概率0.50.5
A品種作物市場價格(元/kg)610
概率0.40.6
求在這塊耕地上種植A品種作物利潤為2000元的概率.

查看答案和解析>>

同步練習(xí)冊答案