5.若△ABC的重心為G,AB=3,AC=4,BC=5,動(dòng)點(diǎn)P滿足$\overrightarrow{GP}=x\overrightarrow{GA}+y\overrightarrow{GB}+z\overrightarrow{GC}$(0≤x,y,z≤1),則點(diǎn)P的軌跡所覆蓋的平面區(qū)域的面積等于12.

分析 確定點(diǎn)P的軌跡所覆蓋的區(qū)域恰好為△ABC面積的2倍,即可得出結(jié)論.

解答 解:由題意,點(diǎn)P的軌跡所覆蓋的區(qū)域如圖所示,恰好為△ABC面積的2倍,
∵AB=3,AC=4,BC=5,
∴△ABC為直角三角形,面積為6,
因此點(diǎn)P的軌跡所覆蓋的平面區(qū)域的面積為12.
故答案為:12.

點(diǎn)評(píng) 本題考查向量知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,確定點(diǎn)P的軌跡所覆蓋的區(qū)域是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.48B.$\frac{32}{3}$C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t-1}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=2+sinθ}\end{array}\right.$(θ為參數(shù))
(Ⅰ)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,$\frac{π}{6}$),判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求點(diǎn)Q到直線l的距離的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知$\overrightarrow{m}$=($\sqrt{3}$sin(2π-x),cosx),$\overrightarrow{n}$=(sin($\frac{3}{2}$π-x),cos(π+x)),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(I)求y=f(x)的單調(diào)遞增區(qū)間和對(duì)稱(chēng)中心;
(Ⅱ)在△ABC中,角A、B、C所對(duì)應(yīng)的邊分別為a、b、c,若有f(B)=$\frac{1}{2}$,b=7,sinA+sinC=$\frac{13\sqrt{3}}{14}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=$\sqrt{3}$sin4x-3cos4x+1的最小正周期和最小值分別是( 。
A.π和1-$\sqrt{3}$B.π和1-2$\frac{π}{2}$$\sqrt{3}$C.$\frac{π}{2}$和1-$\sqrt{3}$D.$\frac{π}{2}$和1-2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x),g(x)都是[0,1]上的實(shí)值函數(shù),證明:存在x0,y0∈[0,1],使得|x0y0-f(x0)-g(y0)|≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.一個(gè)三棱錐的三視圖如圖所示,其中正視圖和側(cè)視圖是全等的等腰三角形,則此
三棱錐外接球的表面積為( 。
A.$\frac{9π}{4}$B.C.D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,已知ΘO1和ΘO2相交于A,B兩點(diǎn).過(guò)點(diǎn)A作ΘO1的切線交ΘO2于點(diǎn)C,過(guò)點(diǎn)B作兩圓的割線,分別交ΘO1,ΘO2于點(diǎn)D,E,DE與AC相交于點(diǎn)P,

(Ⅰ)求證:PE•AD=PD•CE;
(Ⅱ)若AD是ΘO2的切線,且PA=6,PC=2,BD=9,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,邊長(zhǎng)為$\sqrt{2}$的正方形ADEF與梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=$\frac{1}{2}$AB=1,點(diǎn)M在線段EC上.
(Ⅰ)證明:平面BDM⊥平面ADEF;
(Ⅱ)判斷點(diǎn)M的位置,使得平面BDM與平面ABF所成銳二面角為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案