已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.

(1)求橢圓C的方程;
(2)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.

(1)
(2)

解析試題分析:(1)依題意,設(shè)橢圓的方程為.
構(gòu)成等差數(shù)列,
, .
,.
橢圓的方程為   
(2) 將直線的方程代入橢圓的方程中,
 
由直線與橢圓僅有一個(gè)公共點(diǎn)知,,

化簡得: 
設(shè),
(法一)當(dāng)時(shí),設(shè)直線的傾斜角為,
,
,      
,當(dāng)時(shí),,,.
當(dāng)時(shí),四邊形是矩形, 
所以四邊形面積的最大值為 
(法二)


四邊形的面積,                        
                                                   
當(dāng)且僅當(dāng)時(shí),,故
所以四邊形的面積的最大值為 
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評:主要是考查了橢圓方程,以及直線與橢圓的位置關(guān)系的運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,設(shè)拋物線的焦點(diǎn)為,且其準(zhǔn)線與軸交于,以,為焦點(diǎn),離心率的橢圓與拋物線軸上方的一個(gè)交點(diǎn)為P.

(1)當(dāng)時(shí),求橢圓的方程;
(2)是否存在實(shí)數(shù),使得的三條邊的邊長是連續(xù)的自然數(shù)?若存在,求出這樣的實(shí)數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的左、右焦點(diǎn)分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)是橢圓上除長軸端點(diǎn)外的任一點(diǎn),連接,設(shè)的角平分線的長軸于點(diǎn),求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)作斜率為的直線,使與橢圓有且只有一個(gè)公共點(diǎn),設(shè)直線的斜率分別為。若,試證明為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線相交于不同的兩點(diǎn)M、N.當(dāng)時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)為,焦點(diǎn)在軸上,中心在原點(diǎn).若右焦點(diǎn)到直線的距離為3.    
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn).當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,短軸長為4.

(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)直線x=2與橢圓C交于P、Q兩點(diǎn),A、B是橢圓O上位于直線PQ兩側(cè)的動(dòng)點(diǎn),且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設(shè)直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,橢圓C以過點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為的中垂線與軸和軸分別交于兩點(diǎn).

(1)若點(diǎn)的橫坐標(biāo)為,求直線的斜率;
(2)記△的面積為,△為原點(diǎn))的面積為.試問:是否存在直線,使得?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)),直線:,點(diǎn)在直線上移動(dòng),是線段軸的交點(diǎn), 過、分別作直線、,使, .

(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)在直線上任取一點(diǎn)做曲線的兩條切線,設(shè)切點(diǎn)為、,求證:直線恒過一定點(diǎn);
(3)對(2)求證:當(dāng)直線的斜率存在時(shí),直線的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案