已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.
(1)求橢圓C的方程;
(2)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.
(1)
(2)
解析試題分析:(1)依題意,設(shè)橢圓的方程為.
構(gòu)成等差數(shù)列,
, .
又,.
橢圓的方程為
(2) 將直線的方程代入橢圓的方程中,
得
由直線與橢圓僅有一個(gè)公共點(diǎn)知,,
化簡得:
設(shè),,
(法一)當(dāng)時(shí),設(shè)直線的傾斜角為,
則,
, ,
,當(dāng)時(shí),,,.
當(dāng)時(shí),四邊形是矩形,
所以四邊形面積的最大值為
(法二),
.
.
四邊形的面積,
當(dāng)且僅當(dāng)時(shí),,故.
所以四邊形的面積的最大值為
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評:主要是考查了橢圓方程,以及直線與橢圓的位置關(guān)系的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,設(shè)拋物線的焦點(diǎn)為,且其準(zhǔn)線與軸交于,以,為焦點(diǎn),離心率的橢圓與拋物線在軸上方的一個(gè)交點(diǎn)為P.
(1)當(dāng)時(shí),求橢圓的方程;
(2)是否存在實(shí)數(shù),使得的三條邊的邊長是連續(xù)的自然數(shù)?若存在,求出這樣的實(shí)數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓: 的左、右焦點(diǎn)分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為。
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)是橢圓上除長軸端點(diǎn)外的任一點(diǎn),連接,設(shè)的角平分線交的長軸于點(diǎn),求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)作斜率為的直線,使與橢圓有且只有一個(gè)公共點(diǎn),設(shè)直線的斜率分別為。若,試證明為定值,并求出這個(gè)定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線相交于不同的兩點(diǎn)M、N.當(dāng)時(shí),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個(gè)頂點(diǎn)為,焦點(diǎn)在軸上,中心在原點(diǎn).若右焦點(diǎn)到直線的距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn).當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,短軸長為4.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)直線x=2與橢圓C交于P、Q兩點(diǎn),A、B是橢圓O上位于直線PQ兩側(cè)的動(dòng)點(diǎn),且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設(shè)直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,橢圓C以過點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn).
(1)若點(diǎn)的橫坐標(biāo)為,求直線的斜率;
(2)記△的面積為,△(為原點(diǎn))的面積為.試問:是否存在直線,使得?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)(),直線:,點(diǎn)在直線上移動(dòng),是線段與軸的交點(diǎn), 過、分別作直線、,使, .
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)在直線上任取一點(diǎn)做曲線的兩條切線,設(shè)切點(diǎn)為、,求證:直線恒過一定點(diǎn);
(3)對(2)求證:當(dāng)直線的斜率存在時(shí),直線的斜率的倒數(shù)成等差數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com