16.在△ABC中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,2sinAsinB+cosC=0,3a2+3b2+2ab=3c2,則tanA+tanB+tanC=-$\frac{2\sqrt{2}}{3}$.

分析 由已知式子和余弦定理可得cosC=-$\frac{1}{3}$,進而由同角三角函數(shù)基本關(guān)系可得tanC=-2$\sqrt{2}$,再由2sinAsinB+cosC=0和和差角的三角函數(shù)公式可得tanA+tanB的值,整體代入計算可得.

解答 解:∵在△ABC中2sinAsinB+cosC=0,3a2+3b2+2ab=3c2,
∴3(a2+b2-c2)=-2ab,故cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=-$\frac{1}{3}$,
由同角三角函數(shù)基本關(guān)系可得tanC=-2$\sqrt{2}$,
∴tan(A+B)=-tanC=2$\sqrt{2}$=$\frac{tanA+tanB}{1-tanAtanB}$,
再由2sinAsinB+cosC=0可得2sinAsinB=-cosC=cos(A+B),
∴2sinAsinB=cosAcosB-sinAsinB,故3sinAsinB=cosAcosB,
∴tanAtanB=$\frac{sinAsinB}{cosAcosB}$=$\frac{1}{3}$,∴2$\sqrt{2}$=$\frac{tanA+tanB}{1-tanAtanB}$,
∴tanA+tanB=2$\sqrt{2}$(1-tanAtanB)=$\frac{4\sqrt{2}}{3}$,
∴tanA+tanB+tanC=$\frac{4\sqrt{2}}{3}$-2$\sqrt{2}$=-$\frac{2\sqrt{2}}{3}$,
故答案為:-$\frac{2\sqrt{2}}{3}$.

點評 本題考查余弦定理解三角形,涉及三角函數(shù)公式和整體思想,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.${(x-\frac{1}{4x})^6}$的展開式中常數(shù)項為$-\frac{5}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知斜三棱柱的三視圖如圖所示,該斜三棱柱的體積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求y=x2+cos2x-ln5的二階導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosB=bcosA.
(1)判斷△ABC的形狀;
(2)求sin(2A+$\frac{π}{6}$)-2cos2B的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知變量x,y滿足$\left\{\begin{array}{l}x+y≤5\\ x-y≥-3\\ x≥0,y≥0\end{array}\right.$,則2x+3y的最大值為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某電腦的硬盤在電腦啟動后,每3分鐘轉(zhuǎn)2000轉(zhuǎn),則每分鐘所轉(zhuǎn)弧度數(shù)為$\frac{2000π}{3}$,其正弦值sin$\frac{2000π}{3}$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=log2(x2+ax+b)的定義域為(-∞,1)∪(3,+∞),則a=-4,b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,過點F1的直線與圓x2+y2=a2切于點P,|PF2|=3|PF1|,則該雙曲線的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案