6.${(x-\frac{1}{4x})^6}$的展開式中常數(shù)項(xiàng)為$-\frac{5}{16}$.

分析 寫出二項(xiàng)展開式的通項(xiàng),令x的指數(shù)為0求得r值,則答案可求.

解答 解:由${T}_{r+1}={C}_{6}^{r}{x}^{6-r}(-\frac{1}{4x})^{r}=(-\frac{1}{4})^{r}{C}_{6}^{r}{x}^{6-2r}$,
取6-2r=0,得r=3.
∴${(x-\frac{1}{4x})^6}$的展開式中常數(shù)項(xiàng)為$(-\frac{1}{4})^{3}{C}_{6}^{3}=-\frac{5}{16}$.
故答案為:-$\frac{5}{16}$.

點(diǎn)評(píng) 本題考查二項(xiàng)式系數(shù)的性質(zhì),關(guān)鍵是熟記展開式的通項(xiàng),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=logsin3(x2-2x)的單調(diào)遞減區(qū)間(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1=( 。
A.x5B.(x-1)5-1C.x5+1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題“?x0∈R,f(x0)≥2或f(x0)≤1”的否定形式是( 。
A.?x∈R,1<f(x)<2B.?x0∈R,1<f(x0)<2
C.?x∈R,f(x)≥2或f(x)≤1D.?x0∈R,f(x0)≥2或f(x0)>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線x+my-1=0與不等式組$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y+2≤0}\\{x≥-1}\end{array}\right.$,表示的平面區(qū)域有公共點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.[$\frac{1}{2}$,2]B.[$\frac{1}{3}$,3]C.(-∞,$\frac{1}{3}$]∪[3,+∞)D.(-∞,$\frac{1}{2}$]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-1,1),則|2$\overrightarrow{a}+\overrightarrow$|=(  )
A.$\sqrt{2}$B.$\sqrt{13}$C.5$\sqrt{2}$D.$\sqrt{2}+2\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)a是實(shí)數(shù),且$\frac{a+2i}{1+i}$是一個(gè)純虛數(shù),則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,正方體ABCD-A1B1C1D1中,點(diǎn)E是A1D1的中點(diǎn),點(diǎn)F是CE的中點(diǎn).
(Ⅰ)求證:平面ACE⊥平面BDD1B1
(Ⅱ)求證:AE∥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,2sinAsinB+cosC=0,3a2+3b2+2ab=3c2,則tanA+tanB+tanC=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案