3.已知f(x)是定義在集合{x|x≠0}上的偶函數(shù),x>0時f(x)=x+$\frac{1}{x}$,則x<0時f(x)=-x-$\frac{1}{x}$.

分析 由偶函數(shù)的性質(zhì)及對稱性得到x<0時,f(x)=(-x)+$\frac{1}{(-x)}$,由此能求出結(jié)果.

解答 解:∵f(x)是定義在集合{x|x≠0}上的偶函數(shù),
x>0時,f(x)=x+$\frac{1}{x}$,
∴由偶函數(shù)的性質(zhì)得:
x<0時,f(x)=f(-x)=(-x)+$\frac{1}{(-x)}$=-x-$\frac{1}{x}$.
故答案為:$-x-\frac{1}{x}$.

點評 本題考查函數(shù)的解析式的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意偶函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=Asin($\frac{π}{3}$x+φ),x∈R,A>0,0<φ<$\frac{π}{2}$.y=f(x)的部分圖象如圖所示,P、Q 分別為該圖象的最高點和最低點,點P的坐標(biāo)為(1,A).點R的坐標(biāo)為(1,0),∠PRQ=$\frac{3π}{4}$.
(1)求f(x)的最小正周期以及解析式.
(2)用五點法畫出f(x)在x∈[-$\frac{1}{2}$,$\frac{11}{2}$]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.$\sqrt{1-sin2}$+$\sqrt{1+sin2}$=2sin1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.點P到定點F(0,3)的距離和它到定直線y=9的距離的比為1:3,求點P的軌跡方程,并指出軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知關(guān)于x的不等式$\frac{x-m+1}{x-m-1}$<0的解集為A,集合B={x|3-n<x<4-n},A∩B≠∅的充要條件是2<m+n<5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)解不等式$\frac{x-3}{x+7}$<0.
(2)若關(guān)于不等式x2-4ax+4a2+a≤0的解集為∅,則實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若f(x)=ax2+(b+1)x+1(a≠0)是偶函數(shù),g(x)=x3+(a-1)x2-2x是奇函數(shù),則a+b=( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.解關(guān)于x的不等式(x-a)(x+a-1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=asinxcosx-sin2x+$\frac{1}{2}$的一條對稱軸方程為x=$\frac{π}{6}$,則函數(shù)f(x)的最大值為1.

查看答案和解析>>

同步練習(xí)冊答案