A. | $\overrightarrow{BM}$=-$\frac{2}{3}$$\overrightarrow{BA}$+$\frac{1}{6}$$\overrightarrow{BC}$ | B. | $\overrightarrow{BM}$=$\frac{2}{3}\overrightarrow{BA}$+$\frac{1}{6}\overrightarrow{BC}$ | C. | $\overrightarrow{BM}$=$\frac{2}{3}\overrightarrow{BA}$-$\frac{1}{6}\overrightarrow{BC}$ | D. | $\overrightarrow{BM}$=-$\frac{2}{3}\overrightarrow{BA}$-$\frac{1}{6}\overrightarrow{BC}$ |
分析 根據G為△ABC的重心及向量加法平行四邊形法則即可得出$\overrightarrow{AG}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$,再由向量減法和數乘的幾何意義及向量的數乘運算便可得到$\overrightarrow{AG}=-\frac{2}{3}\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}$,同樣由$\overrightarrow{AG}=2\overrightarrow{AM}$可得到$\overrightarrow{AG}=2\overrightarrow{BM}-2\overrightarrow{BA}$,從而得出$-\frac{2}{3}\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}=2\overrightarrow{BM}-2\overrightarrow{BA}$,進行向量的數乘運算即可求出$\overrightarrow{BM}$,從而找出正確選項.
解答 解:如圖,
根據條件,$\overrightarrow{AG}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$=$\frac{1}{3}(-\overrightarrow{BA}+\overrightarrow{BC}-\overrightarrow{BA})$=$-\frac{2}{3}\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}$;
又$\overrightarrow{AG}=2\overrightarrow{AM}=2(\overrightarrow{BM}-\overrightarrow{BA})=2\overrightarrow{BM}-2\overrightarrow{BA}$;
∴$-\frac{2}{3}\overrightarrow{BA}+\frac{1}{3}\overrightarrow{BC}=2\overrightarrow{BM}-2\overrightarrow{BA}$;
∴$\overrightarrow{BM}=\frac{2}{3}\overrightarrow{BA}+\frac{1}{6}\overrightarrow{BC}$.
故選:B.
點評 考查向量減法和數乘的幾何意義,向量的數乘運算,三角形重心的概念及重心的性質.
科目:高中數學 來源: 題型:選擇題
A. | 2 016 | B. | -2 016 | C. | 3 024 | D. | -3 024 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 18 | B. | 24 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1000$\sqrt{42}$m | B. | 1000$\sqrt{6}$m | C. | 1000$\sqrt{24}$m | D. | 1000m |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com