A. | -140 | B. | -50 | C. | 124 | D. | 156 |
分析 依題意可知Tn=${2}^{{n}^{2}-15n}$,利用an=$\frac{{T}_{n}}{{T}_{n-1}}$=$\frac{1}{{2}^{16-2n}}$(n≥2),n=1時,符合,可得log2an=2n-16,利用分組求和法,可求得列{log2an}的前10項(xiàng)和.
解答 解:∵各項(xiàng)為正的數(shù)列{an}的前n項(xiàng)的乘積為Tn,
點(diǎn)(Tn,n2-15n)在函數(shù)y=log2x的圖象上,
∴n2-15n=log2Tn,
Tn=${2}^{{n}^{2}-15n}$,
∴an=$\frac{{T}_{n}}{{T}_{n-1}}$=$\frac{{2}^{{n}^{2}-15n}}{{2}^{{(n-1)}^{2}-15(n-1)}}$=$\frac{1}{{2}^{16-2n}}$(n≥2),n=1時,也符合,
∴l(xiāng)og2an=2n-16.
∴數(shù)列{log2an}的前10項(xiàng)和為:2(1+2+…+10)-16×10=110-160=-50.
故選:B.
點(diǎn)評 本題考查數(shù)列的求和,求得log2an=2n-16是關(guān)鍵,考查函數(shù)思想與等價轉(zhuǎn)化思想的運(yùn)用,考查等差數(shù)列的求和公式的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(3,+∞) | B. | (-∞,-2)∪[1,3) | C. | (-2,1]∪(3,+∞) | D. | (-2,1)∪[1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組別 | A | B | C | D | E |
人數(shù) | 50 | 50 | 150 | 150 | 100 |
組別 | A | B | C | D | E |
人數(shù) | 50 | 50 | 150 | 150 | 100 |
抽取人數(shù) | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{2}$,+∞) | B. | [-$\frac{3}{2}$,+∞) | C. | [-1,+∞) | D. | [-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com