18.若(x+$\frac{1}{x}$)n的展開式中第3項與第7項的二項式系數(shù)相等,則該展開式中$\frac{1}{x^2}$的系數(shù)為(  )
A.32B.56C.63D.21

分析 根據(jù)題意${C}_{n}^{2}$=${C}_{n}^{6}$,求得n的值,再利用二項展開式的通項公式,即可求出結果.

解答 解:∵(x+$\frac{1}{x}$)n的展開式中第3項與第7項的二項式系數(shù)相等,
∴${C}_{n}^{2}$=${C}_{n}^{6}$,解得n=8;
∴(x+$\frac{1}{x}$)8的展開式中通項公式為:
Tr+1=${C}_{8}^{r}$•x8-r•${(\frac{1}{x})}^{r}$=${C}_{8}^{r}$•x8-2r
令8-2r=-2,解得r=5;
∴展開式中$\frac{1}{x^2}$的系數(shù)為${C}_{8}^{5}$=56.
故選:B.

點評 本題考查了二項式定理的應用問題,也考查了二項式系數(shù)的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.乒乓球比賽采用7局4勝制,若甲、乙兩人實力相當,獲勝的概率各占一半,則打完5局后仍不能結束比賽的概率等于$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某校1000名學生身高的頻率分布直方圖如圖所示.則155cm到170cm的人數(shù)是( 。 
 
A.525B.675C.135D.725

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知正方體ABCD-A1B1C1D1的棱AA1=2,求:
(1)求異面直線A1D與AC所成角的大。
(2)求四面體A1-DCA的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,a、b、c分別是角A、B、C的對邊,且2acosB=bcosC+ccosB.
(1)求角B的大;
(2)若b=2,a+c=4,求a和c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某次知識競賽中,從6道備選題中一次性隨機抽取3道,并獨立完成所抽取的3道題.某選手能正確完成其中4道題,規(guī)定至少正確答對其中2道題目便可過關.
(1)求該選手能過關的概率;
(2)記所抽取的3道題中,該選手答對的題目數(shù)為X,寫出X的概率分布列,并求E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在△ABC中,AD⊥BC,垂足為D,且BD:DC:AD=2:3:6
(1)求∠BAC的大。
(2)若E在AC上,且AC=3AE.已知△ABC的面積為15,求BE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),y=f(x)的部分圖象如圖,則f($\frac{π}{2}$)=( 。
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設a>0,函數(shù)f(x)=cosx(2asinx-cosx)+sin2x的最大值為2.
(1)求函數(shù)f(x)的單調遞減區(qū)間;
(2)設△ABC三內角A,B,C所對邊分別為a,b,c且$\frac{{a}^{2}+{c}^{2}-^{2}}{{a}^{2}+^{2}-{c}^{2}}$=$\frac{c}{2a-c}$,求f(x)在[B,$\frac{π}{2}}$]上的值域.

查看答案和解析>>

同步練習冊答案