分析 (1)化解f(x),根據(jù)最大值為2,求得a的值,利用輔助角公式求得f(x)的解析式,利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)遞減區(qū)間;
(2)利用余弦定理將$\frac{{a}^{2}+{c}^{2}-^{2}}{{a}^{2}+^{2}-{c}^{2}}$=$\frac{c}{2a-c}$化簡,根據(jù)正弦定理求及兩角和的正弦公式即可求得B的值,根據(jù)正弦函數(shù)的單調(diào)性,求得f(x)在[B,$\frac{π}{2}}$]上的值域.
解答 解:(1)f(x)=cosx(2asinx-cosx)+sin2x=asin2x-cos2x…(2分)
由$f{(x)_{max}}=\sqrt{{a^2}+1}=2$得,$a=\sqrt{3}$…(3分)
因此$f(x)=asin2x-cos2x=\sqrt{3}sin2x-cos2x=2sin(2x-\frac{π}{6})$…(4分)
令$\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{3π}{2}+2kπ,k∈Z$,
解得:$\frac{π}{3}+kπ≤x≤\frac{5π}{6}+kπ,k∈Z$,
故函數(shù)f(x)的單調(diào)遞減區(qū)間$[{\frac{π}{3}+kπ,\frac{5π}{6}+kπ}](k∈Z)$…(6分)
(2)由余弦定理知:$\frac{{{a^2}+{c^2}-{b^2}}}{{{a^2}+{b^2}-{c^2}}}=\frac{2accosB}{2abcosC}=\frac{ccosB}{bcosC}=\frac{c}{2a-c}$即2acosB-ccosB=bcosC,…(8分)
又由正弦定理知:$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=2R,
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA,
即$cosB=\frac{1}{2}$,
所以$B=\frac{π}{3}$….…(10分)
當(dāng)$x∈[{\frac{π}{3},\frac{π}{2}}]$時,
$2x-\frac{π}{6}∈[{\frac{π}{2},\frac{5π}{6}}]$,f(x)∈[1,2],
故f(x)在[B,$\frac{π}{2}}$]上的值域為[1,2]….…(12分)
點評 本題考查三角恒等變換與正余弦定理相結(jié)合,考查正弦函數(shù)圖象及性質(zhì),考查綜合分析問題及解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 56 | C. | 63 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,2] | B. | (0,2) | C. | (-∞,-2]∪[4,+∞) | D. | [-2,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $30(\sqrt{3}-1)m$ | B. | $60(\sqrt{3}-1)m$ | C. | $90(\sqrt{3}-1)m$ | D. | $120(\sqrt{3}-1)m$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:選擇題
來源: 題型:A. | 0.683 | B. | 0.853 | C. | 0.954 | D. | 0.977 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)<f(e)ln2,2f(e)>f(e2) | B. | f(2)<f(e)ln2,2f(e)<f(e2) | ||
C. | f(2)>f(e)ln2,2f(e)<f(e2) | D. | f(2)>f(e)ln2,2f(e)>f(e2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com