9.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且A=60°,b=1,c=3.
(1)求a的值;
(2)求$\frac{1}{tanB}$+$\frac{1}{tanC}$的值.

分析 (1)利用余弦定理求a的值;
(2)由正弦定理可得sinB=$\frac{\sqrt{3}}{2\sqrt{7}}$,sinC=$\frac{3\sqrt{3}}{2\sqrt{7}}$,再求$\frac{1}{tanB}$+$\frac{1}{tanC}$的值.

解答 解:(1)∵A=60°,b=1,c=3,
∴a=$\sqrt{1+9-2×1×3×\frac{1}{2}}$=$\sqrt{7}$;
(2)由正弦定理可得$\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}=\frac{1}{sinB}=\frac{3}{sinC}$,∴sinB=$\frac{\sqrt{3}}{2\sqrt{7}}$,sinC=$\frac{3\sqrt{3}}{2\sqrt{7}}$
$\frac{1}{tanB}$+$\frac{1}{tanC}$=$\frac{cosB}{sinB}$+$\frac{cosC}{sinC}$=$\frac{sin(B+C)}{sinBsinC}$=$\frac{\sqrt{3}}{2}•\frac{2\sqrt{7}}{\sqrt{3}}•\frac{2\sqrt{7}}{3\sqrt{3}}$=$\frac{14\sqrt{3}}{9}$.

點(diǎn)評 本題考查余弦定理、正弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若A(1,4),B(-3,1),過點(diǎn)B的直線l與點(diǎn)A的距離為d.
(1)d的取值范圍為0≤d≤0;
(2)當(dāng)d取最大值時(shí),直線l的方程為4x+3y+9=0;
(3)當(dāng)d=4時(shí),直線l的方程為x=-3或7x+24y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知P是△ABC所在平面外一點(diǎn),若P到ABC三邊距離相等,則點(diǎn)P在平面ABC上的射影一定是△ABC的(  )
A.重心B.外心C.內(nèi)心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a>0,b>0,c>0,d>0,求證:$\frac{ad+bc}{bd}$+$\frac{bc+ad}{ac}$≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a>b,ab≠0,則下列不等式中:①a2>b2;②$\frac{1}{a}<\frac{1}$;③a3>b3;④a2+b2>2ab,恒成立的不等式的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.從圓(x-2)2+(y-3)2=1外一點(diǎn)p(a,b)引此圓的一條切線,其切點(diǎn)為Q.
(1)若p點(diǎn)到Q和原點(diǎn)的距離相等,求a,b的關(guān)系式.
(2)在條件(1)下,求出使得切線長pQ為最小的點(diǎn)p的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知,AE是⊙O的直徑,弦BC與AE相交于D,求證:tanB•tanC=$\frac{AD}{DE}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-ax有兩個(gè)零點(diǎn)x1、x2(x1<x2),求證:x1+x2<2lna.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不等式|x+2|<3的解集是(-5,1),不等式|2x-1|≥3的解集是(-∞,-1]∪[2,+∞).

查看答案和解析>>

同步練習(xí)冊答案