5.已知函數(shù)f(x)=ex-ax有兩個(gè)零點(diǎn)x1、x2(x1<x2),求證:x1+x2<2lna.

分析 利用函數(shù)零點(diǎn)的性質(zhì),結(jié)合函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,構(gòu)造函數(shù),利用導(dǎo)數(shù)進(jìn)行轉(zhuǎn)化即可證明不等式.

解答 解:∵f(x)有兩個(gè)相異零點(diǎn),
∴設(shè)${e}^{{x}_{1}}$=ax1,${e}^{{x}_{2}}$=ax2,①
即${e}^{{x}_{1}}$${e}^{{x}_{2}}$=${e}^{{x}_{1}+{x}_{2}}$=a2x1x2,
而:x1+x2<2lna,等價(jià)于:${e}^{{x}_{1}+{x}_{2}}$<e2lna=${e}^{ln{a}^{2}}$=a2
即a2x1x2<a2,
則等價(jià)為x1x2<1
函數(shù)的f(x)的導(dǎo)數(shù)f′(x)=ex-a,
若a≤0,則f′(x)=ex-a>0,還是單調(diào)遞增,則不滿足條件.
則a>0,
由f′(x)>0得x>lna,
由f′(x)<0得x<lna,
即當(dāng)x=lna時(shí),還是f(x)取得極小值同時(shí)也是最小值f(lna)=elna-alna=a(1-lna),
∵f(x)有兩個(gè)零點(diǎn),∴a(1-lna)<0,
即1-lna<0,則lna>1,即a>e.
要證x1+x2<2lna,則只需要x2<2lna-x1,
又x2>lna,則只需要證明f(x2)<f(2lna-x1),
即證f(2lna-x1)>f(x2)=0=f(x1),
令g(x)=f(2lna-x)-f(x),(x<lna),
則g(x)=e2lna-x-a(2lna-x)-ex+ax,
g′(x)=-a2e-x+a-ex+a=$\frac{-{a}^{2}+2a{e}^{x}-{e}^{2x}}{{e}^{x}}$=-$\frac{({e}^{x}-a)^{2}}{{e}^{x}}$≤0,
即g(x)在(-∞,lna]上單調(diào)遞減,
即g(x)>g(lna)=0,
則命題成立.

點(diǎn)評 本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系和應(yīng)用,綜合性較強(qiáng),運(yùn)算量較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過A于AF2垂直的直線交x軸于Q點(diǎn),且$\overrightarrow{Q{F}_{2}}$=2$\overrightarrow{Q{F}_{1}}$.
(1)求橢圓C的離心率;
(2)若過A、Q,F(xiàn)1三點(diǎn)的圓恰好與直線x+$\sqrt{3}$y+10=0相切,求橢圓C的方程;
(3)過F1的直線l與(2)中橢圓交于不同的兩點(diǎn)M、N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且A=60°,b=1,c=3.
(1)求a的值;
(2)求$\frac{1}{tanB}$+$\frac{1}{tanC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:an+1=$\left\{\begin{array}{l}{2{a}_{n},{a}_{n}≤1}\\{\frac{1}{{a}_{n}},{a}_{n>1}}\end{array}\right.$,若存在三個(gè)不同的首項(xiàng)a1,使得a3=m,則實(shí)數(shù)m的取值范圍是( 。
A.(0,+∞)B.(0,1)C.[$\frac{1}{2}$,1)D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=10cosφ}\\{y=8sinφ}\end{array}\right.$,(其中φ為參數(shù))在同一平面直角坐標(biāo)系中,將曲線C上的點(diǎn)按坐標(biāo)變換$\left\{\begin{array}{l}{X=\frac{1}{5}x+3}\\{Y=\frac{1}{4}y}\end{array}\right.$得到曲線C1
(1)求曲線C1的普通方程;
(2)設(shè)點(diǎn)P是曲線C上的動點(diǎn),過點(diǎn)P作直線與曲線C1切于點(diǎn)Q,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知直線l經(jīng)過點(diǎn)A(0,3)與曲線y=$\frac{1}{{x}^{2}}$相切,且斜率為正值,則l的方程為y=2x+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法中不正確的是(  )
A.若命題p:?x0∈R,使得x02-x0+1<0,則¬p:?x∈R,都有x2-x+1≥0.
B.存在無數(shù)個(gè)α、β∈R,使得等式sin(α-β)=sinαcosβ+cosαsinβ成立
C.命題“在△ABC中,若sinA=sinB,則A=B”的逆否命題是真命題
D.“p∧q為真”是“p∨q為真”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知拋物線C:y=ax2(a>0)與射線l1:y=2x-1(x≥0)、l2:y=-2x-1(x≤0)均只有一個(gè)公共點(diǎn),過定點(diǎn)M(0,-1)和N(0,$\frac{1}{4}$)的動圓分別與l1、l2交于點(diǎn)A、B,直線AB與x軸交于點(diǎn)P.
(1)求實(shí)數(shù)a及$\overrightarrow{NP}$•$\overrightarrow{AB}$的值;
(2)試判斷:|MA|+|MB|是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.解不等式:|x+3|-|x-3|>3.

查看答案和解析>>

同步練習(xí)冊答案