分析 (1)運用橢圓的性質(zhì)和直線和圓相切的條件:d=r,解方程可得c,b,由a=$\sqrt{^{2}+{c}^{2}}$,可得a,進而得到橢圓方程;
(2)將直線l的方程y=kx+m代入橢圓C的方程3x2+4y2=12中,運用判別式為0,可得m2=3+4k2.求得F1,F(xiàn)2到直線l的距離,討論k=0,k≠0,運用四邊形的面積公式,化簡整理可得m的函數(shù)式,求得最值即可.
解答 解:(1)由題意橢圓C的中心在坐標(biāo)原點,
左、右焦點分別為F1,F(xiàn)2,P為橢圓C上的動點,△PF1F2的面積最大值為$\sqrt{3}$,
以原點為圓心,橢圓短半軸長為半徑的圓與直線$\sqrt{3}$x-y+2$\sqrt{3}$=0相切.
可得S${\;}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}$•2c•b=$\sqrt{3}$,b=$\frac{2\sqrt{3}}{\sqrt{3+1}}$=$\sqrt{3}$,
解得c=1,b=$\sqrt{3}$,
故a=$\sqrt{^{2}+{c}^{2}}$=2.
所以橢圓C的方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)將直線l的方程y=kx+m代入橢圓C的方程3x2+4y2=12中,
得(3+4k2)x2+8kmx+4m2-12=0.
由直線l與橢圓C僅有一個公共點,△=64k2m2-4(3+4k2)(4m2-12)=0,
化簡得m2=3+4k2.
設(shè)d1=|F1M|=$\frac{|-k+m|}{\sqrt{1+{k}^{2}}}$,d2=|F2M|=$\frac{|k+m|}{\sqrt{1+{k}^{2}}}$,
當(dāng)k≠0時,設(shè)直線l的傾斜角為θ,則|d1-d2|=|MN|•|tanθ|,
即有|MN|=|$\frac{1dxhbtn_{1}-ppbnzrt_{2}}{k}$|,
S=$\frac{1}{2}$|$\frac{5nx5dnx_{1}-rj5lv55_{2}}{k}$|(d1+d2)=|$\frac{{hdzrtdx_{1}}^{2}-{ppxhhzr_{2}}^{2}}{2k}$|=$\frac{2|m|}{1+{k}^{2}}$=$\frac{2|m|}{1+\frac{{m}^{2}-3}{4}}$=$\frac{8}{|m|+\frac{1}{|m|}}$,
由m2=3+4k2.當(dāng)k≠0時,|m|>$\sqrt{3}$,|m|+$\frac{1}{|m|}$>$\sqrt{3}$+$\frac{1}{\sqrt{3}}$=$\frac{4\sqrt{3}}{3}$,
可得S<2$\sqrt{3}$.
當(dāng)k=0時,四邊形F1MNF2是矩形,S=2$\sqrt{3}$.
所以四邊形F1MNF2的面積S的最大值為2$\sqrt{3}$.
點評 本題考查橢圓的方程的求法,注意運用直線和圓相切的條件:d=r,考查四邊形的面積的最值的求法,注意運用直線和橢圓方程聯(lián)立,運用判別式為0和函數(shù)的單調(diào)性,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可以導(dǎo)電 | |
B. | 猜想數(shù)列5,7,9,11,…的通項公式為an=2n+3 | |
C. | 半徑為r的圓的面積S=π•r2,則單位圓的面積S=π | |
D. | 由正三角形的性質(zhì)得出正四面體的性質(zhì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com