7.用反證法證明命題“設(shè)a,b為實數(shù),則方程x3+ax2+b=0至少有一個實根”時,要做的假設(shè)是( 。
A.方程x3+ax2+b=0至多有一個實根B.方程x3+ax2+b=0沒有實根
C.方程x3+ax2+b=0至多有兩個實根D.方程x3+ax2+b=0恰好有兩個實根

分析 直接利用命題的否定寫出假設(shè)即可.

解答 解:反證法證明問題時,反設(shè)實際是命題的否定,
∴用反證法證明命題“設(shè)a,b為實數(shù),則方程x3+ax2+b=0至少有一個實根”時,要做的假設(shè)是:方程x3+ax2+b=0沒有實根.
故選:B.

點評 本題考查反證法證明問題的步驟,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.(3x-$\frac{1}{2}$y)9的展開式中的偶數(shù)項的二項式系數(shù)之和為256.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$|\overrightarrow a|$=1,$|\overrightarrow b|$=2,$\overrightarrow a$與$\overrightarrow b$的夾角為60°.求:
(1)$|\overrightarrow a+\overrightarrow b|$,$|\overrightarrow a-\overrightarrow b|$
(2)$\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下面幾種推理中是演繹推理的是( 。
A.由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可以導(dǎo)電
B.猜想數(shù)列5,7,9,11,…的通項公式為an=2n+3
C.半徑為r的圓的面積S=π•r2,則單位圓的面積S=π
D.由正三角形的性質(zhì)得出正四面體的性質(zhì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列各式的值:
(1)cos$\frac{25π}{3}$+tan($\frac{15π}{4}$);
(2)sin810°+tan765°-cos360°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),右焦點到橢圓上的點的距離的最大值為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點A,B是橢圓C上的兩個動點,直線OA,OB與橢圓的另一交點分別為A1,B1,且直線OA,OB的斜率之積等于-$\frac{3}{4}$,問四邊形ABA1B1的面積S是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知圓的一般方程x2+y2-4x-2y-5=0,其半徑是$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=|x•ex|,又g(x)=f2(x)+tf(x)(t∈R),若滿足g(x)=-1的x有四個,則t的取值范圍為(  )
A.(-∞,-$\frac{{e}^{2}+1}{e}$)B.($\frac{{e}^{2}+1}{e}$,+∞)C.(-$\frac{{e}^{2}+1}{e}$,-2)D.(2,$\frac{{e}^{2}+1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F2的直線交雙曲線于A,B兩點,連結(jié)AF1,BF1,若|AB|=|BF1|,且∠ABF1=90°,則雙曲線的離心率為(  )
A.5-2$\sqrt{2}$B.$\sqrt{5-2\sqrt{2}}$C.6-3$\sqrt{2}$D.$\sqrt{6-3\sqrt{2}}$

查看答案和解析>>

同步練習(xí)冊答案