7.設集合M={-1,1},N=$\left\{{x\left|{\frac{1}{x}<2}\right.}\right\}$,則下列結論正確的是( 。
A.N⊆MB.M⊆NC.M∩N=∅D.M∪N=R

分析 由集合M={-1,1},N=$\left\{{x\left|{\frac{1}{x}<2}\right.}\right\}$={x|x<0或x$>\frac{1}{2}$},逐一判斷即可得答案.

解答 解:集合M={-1,1},N=$\left\{{x\left|{\frac{1}{x}<2}\right.}\right\}$={x|x<0或x$>\frac{1}{2}$},
則M⊆N,故A錯誤;
M⊆N,故B正確;
M∩N={-1,1},故C錯誤;
M∪N=N,故D錯誤.
故選:B.

點評 本題主要考查了集合的包含關系判斷及應用,考查了分式不等式的解法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.有兩個命題:p:四邊形的一組對邊平行且相等q:四邊形是矩形,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$\overrightarrow{a}$=(0,-1),$\overrightarrow$=(-1,2),則(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=( 。
A.-1B.0C.1D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知點F(1,0),點P為平面內的動點,過點P作直線l:x=-1的垂線,垂足為Q,且$\overrightarrow{QP}•\overrightarrow{QF}=\overrightarrow{FP}•\overrightarrow{FQ}$.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)設點P的軌跡C與x軸交于點M,點A,B是軌跡C上異于點M的不同的兩點,且滿足$\overrightarrow{MA}•\overrightarrow{AB}=0$,求$|\overrightarrow{MB}|$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.一根鐵絲長為6米,鐵絲上有5個節(jié)點將鐵絲6等分,現(xiàn)從5個節(jié)點中隨機選一個將鐵絲剪斷,則所得的兩段鐵絲長均不小于2米的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某汽車公司為了考查某4S店的服務態(tài)度,對到店維修保養(yǎng)的客戶進行回訪調查,每個用戶在到此店維修或保養(yǎng)后可以對該店進行打分,最高分為10分.上個月公司對該4S店的100位到店維修保養(yǎng)的客戶進行了調查,將打分的客戶按所打分值分成以下幾組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10],得到頻率分布直方圖如圖所示.
(Ⅰ)分別求第四、五組的頻率;
(Ⅱ)該公司在第二、三組客戶中按分層抽樣的方法抽取6名客戶進行深入調查,之后將從這6人中隨機抽取2人進行物質獎勵,求得到獎勵的人來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的兩個焦點為F1,F(xiàn)2,焦距為2,設點P(a,b)滿足△PF1F2是等腰三角形.
(1)求該橢圓方程;
(2)過x軸上的一點M(m,0)作一條斜率為k的直線l,與橢圓交于點A,B兩點,問是否存在常數(shù)k,使得|MA|2+|MB|2的值與m無關?若存在,求出這個k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0)的兩條切線方程y=±$\frac{1}{2}$(x-4),切點分別為A、B,且切線與x軸的交點為T.
(1)求a的值;
(2)過T的直線l與橢圓C交于M,N兩點,與AB交于點D,求證:$\frac{|TD|}{|TM|}$+$\frac{|TD|}{|TN|}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=$\frac{3•{5}^{x}-5•{3}^{x}}{{5}^{x+1}+{3}^{x+1}}$的值域為(-$\frac{5}{3}$,$\frac{3}{5}$).

查看答案和解析>>

同步練習冊答案