12.某汽車公司為了考查某4S店的服務(wù)態(tài)度,對到店維修保養(yǎng)的客戶進行回訪調(diào)查,每個用戶在到此店維修或保養(yǎng)后可以對該店進行打分,最高分為10分.上個月公司對該4S店的100位到店維修保養(yǎng)的客戶進行了調(diào)查,將打分的客戶按所打分值分成以下幾組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10],得到頻率分布直方圖如圖所示.
(Ⅰ)分別求第四、五組的頻率;
(Ⅱ)該公司在第二、三組客戶中按分層抽樣的方法抽取6名客戶進行深入調(diào)查,之后將從這6人中隨機抽取2人進行物質(zhì)獎勵,求得到獎勵的人來自不同組的概率.

分析 (1)由直方圖能求出第四、五組的頻率.
(2)由直方圖知,第二、三組客戶人數(shù)分別為10人和20人,所以抽出的6人中,第二組有2人,第三組有4人,由此利用列舉法能求出得到獎勵的人來自不同組的概率.

解答 解:(1)由直方圖知,第四組的頻率為0.175×2=0.35,
第五組的頻率為0.15×2=0.30,
所以第四、五組的頻率分別為0.35和0.3.…(4分)
(2)由直方圖知,第二、三組客戶人數(shù)分別為10人和20人,
所以抽出的6人中,第二組有2人,設(shè)為A,B,第三組有4人,設(shè)為a,b,c,d.
從中隨機抽取2人的所有情況如下:
AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd共15種.…(8分)
其中,兩人來自不同組的情況共有8種,…(10分)
所以,得到獎勵的人來自不同組的概率為$\frac{8}{15}$.  …(12分)

點評 本題考查頻率分布直方圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.求下列函數(shù)的定義域.
(1)y=$\frac{{\root{3}{4-x}}}{{\sqrt{x+1}}}-{x^0}${x|x>-1x≠0}
(2)y=$\sqrt{{{log}_{\frac{1}{2}}}(3x-2)}${x|$\frac{2}{3}$<x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.人的體重是人的身體素質(zhì)的重要指標之一.某校抽取了高二的部分學(xué)生,測出他們的體重(公斤),體重在40公斤至65公斤之間,按體重進行如下分組:第1組[40,45),第2組[45,50),第3組[50,55),第4組[55,60),第5組[60,65],并制成如圖所示的頻率分布直方圖,已知第1組與第3組的頻率之比為1:3,第3組的頻數(shù)為90.
(Ⅰ)求該校抽取的學(xué)生總數(shù)以及第2組的頻率;
(Ⅱ)學(xué)校為進一步了解學(xué)生的身體素質(zhì),在第1組、第2組、第3組中用分層抽樣的方法抽取6人進行測試.若從這6人中隨機選取2人去共同完成某項任務(wù),求這2人來自于同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合M={-1,1},N=$\left\{{x\left|{\frac{1}{x}<2}\right.}\right\}$,則下列結(jié)論正確的是( 。
A.N⊆MB.M⊆NC.M∩N=∅D.M∪N=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.一所學(xué)校計劃舉辦“國學(xué)”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動,在活動前,對所選的10名同學(xué)進行了國學(xué)素養(yǎng)測試,這10名同學(xué)的性別和測試成績(百分制)的莖葉圖如圖所示.
(Ⅰ)根據(jù)這10名同學(xué)的測試成績,分別估計該班男、女生國學(xué)素養(yǎng)測試的平均成績;
(Ⅱ)這10名同學(xué)中男生和女生的國學(xué)素養(yǎng)測試成績的方差分別為$s_1^2$,$s_2^2$,試比較$s_1^2$與$s_2^2$的大小(只需直接寫出結(jié)果);
(Ⅲ)若從這10名同學(xué)中隨機選取一男一女兩名同學(xué),求這兩名同學(xué)的國學(xué)素養(yǎng)測試成績均為優(yōu)良的概率.(注:成績大于等于75分為優(yōu)良)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知正項數(shù)列{an},前n項和為Sn,且有$\sqrt{{S}_{n}}$=λan+c.
(1)求證:λc≤$\frac{1}{4}$;
(2)若λ=1,c=0,求證:Sn≥($\frac{n+1}{2}$)2
(3)若2a2=a1+a3,求證:{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某公司為確定明年投入某產(chǎn)品廣告支出,對近5年的廣告支出m與銷售額t(單位:百萬元)進行了初步統(tǒng)計,得到下列表格中的數(shù)據(jù):
t3040p5070
m24568
經(jīng)測算,年廣告支出m和年銷售額t滿足線性回歸方程$\widehat{t}$=6.5m+17.5,則p的值為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)點P是△ABC所在平面內(nèi)的一點,$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=4$\overrightarrow{AB}$,且△ABC的面積為S,則下列判斷正確的是(  )
A.點P在△ABC外,且△APC的面積為$\frac{1}{3}$SB.點P在△ABC外,且△APC的面積為$\frac{1}{2}$S
C.點P在△ABC內(nèi),且△APC的面積為$\frac{1}{3}$SD.點P在△ABC內(nèi),且△APC的面積為$\frac{1}{2}$S

查看答案和解析>>

同步練習(xí)冊答案