9.若y=4-$\sqrt{-{x}^{2}+2x+3}$最小值為a,最大值為b,則$\underset{lim}{n→∞}$$\frac{{a}^{n}-2^{n}}{3{a}^{n}-4^{n}}$=$\frac{1}{2}$.

分析 先求函數(shù)的定義,求出函數(shù)的最大值a和最小值b,代入求極限.

解答 解:y=4-$\sqrt{-{x}^{2}+2x+3}$,定義域為[-1,3]
當(dāng)x=1時,y取最小值為2,當(dāng)x=3或-1時,y取最大值為4,
故a=2,b=4;
$\underset{lim}{n→∞}$$\frac{{a}^{n}-2^{n}}{3{a}^{n}-4^{n}}$=$\underset{lim}{n→∞}$$\frac{{2}^{n}-2{•4}^{n}}{3•{2}^{n}-4•{4}^{n}}$=$\underset{lim}{n→∞}\frac{(\frac{1}{2})^{n}-2}{3•(\frac{1}{2})^{n}-4}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題考查求函數(shù)的定義域,根據(jù)定義域求函數(shù)的最值及求極限,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{12}$個單位后的圖象關(guān)于y軸對稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為(  )
A.0B.-1C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知{an}為等比數(shù)列,a1=3,且4a1,2a2,a3成等差數(shù)列,則a3+a5等于( 。
A.189B.72C.60D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x||x|≤2},B={x|x2-3x≤0,x∈N},則A∩B=( 。
A.{0,4}B.{-2,-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知x,y∈R且滿足不等式組$\left\{\begin{array}{l}x≥1\\ 2x+y-5≤0\\ kx-y-k-1≤0\end{array}\right.$,當(dāng)k=1時,不等式組所表示的平面區(qū)域的面積為$\frac{8}{3}$,若目標(biāo)函數(shù)z=3x+y的最大值為7,則k的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C所對應(yīng)的邊分別是a,b,c,向量$\overrightarrow{m}$=(a-c,b+c),$\overrightarrow{n}$=(b-c,a),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求B;
(2)若b=$\sqrt{13}$,cos(A+$\frac{π}{6}$)=$\frac{3\sqrt{39}}{26}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.(理)已知${({x+1})^{10}}={a_1}+{a_2}x+{a_3}{x^2}+…+{a_{11}}{x^{10}}$.若數(shù)列a1,a2,a3,…,ak(1≤k≤11,k∈Z)是一個單調(diào)遞增數(shù)列,則k的最大值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=log34,b=logπ3,c=50.5,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,A為銳角,向量$\overrightarrow{m}$=(2sinA,-$\sqrt{3}$),$\overrightarrow{n}$=(cos2A,2cos2$\frac{A}{2}$-1),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求A的大;
(2)如果a=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案