8.化簡:
(1)$\root{6}{{{{(\frac{{8{a^3}}}{{125{b^3}}})}^4}}}$•($\frac{{8{a^{-3}}}}{{27{b^6}}}$)${\;}^{-\frac{1}{3}}}$;
(2)(lg2)•[(ln$\sqrt{e}$)-1+log${\;}_{\sqrt{2}}}$5].

分析 (1)利用根式以及有理指數(shù)冪化簡求解即可.
(2)利用對數(shù)運(yùn)算法則化簡求解即可.

解答 解:(1)$\root{6}{{{{(\frac{{8{a^3}}}{{125{b^3}}})}^4}}}$•($\frac{{8{a^{-3}}}}{{27{b^6}}}$)${\;}^{-\frac{1}{3}}}$
=$\frac{9}{25}×\frac{2}{3}•{a}^{2+1}^{-2+2}$
=$\frac{6}{25}{a^3}$;
(2)(lg2)•[(ln$\sqrt{e}$)-1+log${\;}_{\sqrt{2}}}$5]=lg2(2+2log25)
=2lg2(log22+log25)
=2lg2×$\frac{1}{lg2}$
=2.

點(diǎn)評 本題考查有理指數(shù)冪的運(yùn)算以及對數(shù)運(yùn)算法則的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)y=loga(2-ax)在x∈[0,1]上是減函數(shù),則實數(shù)a的取值范圍是( 。
A.(0,1)B.(1,2)C.(0,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x2-1)定義域為[0,3],則 f(2x-1)的定義域為[0,$\frac{9}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(diǎn)P(1,$\frac{3}{2}$),離心率e=$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)AB是經(jīng)過橢圓右焦點(diǎn)F的任一弦,問:在x軸上是否存在定點(diǎn)C,使得$\overrightarrow{CA}$•$\overrightarrow{CB}$為常數(shù)?若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)y=f(x)在R上為奇函數(shù),且當(dāng)x≥0時,f(x)=x2-2x,則f(-3)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知A表示點(diǎn),a,b,c表示直線,M,N表示平面,給出以下命題:
①a⊥M,若M⊥N,則a∥N       
②a⊥M,若b∥M,c∥a,則a⊥b,c⊥b
③a⊥M,b?M,若b∥M,則b⊥a
④a?β,b∩β=A,c為b在β內(nèi)的射影,若a⊥c,則a⊥b.
其中命題成立的是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,如圖描述了甲、乙、丙三輛汽車在不同速度下燃油效率情況,下列敘述中正確的是( 。
A.消耗1升汽油,乙車最多可行駛5千米
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C.某城市機(jī)動車最高限速80千米/小時,相同條件下,在該市用丙車比用乙車更省油
D.甲車以80千米/小時的速度行駛1小時,消耗10升汽油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)P={x|x≤1},Q={x|-1≤x≤2},那么P∩Q=(  )
A.{x|-1<x<1}B.{x|-1≤x<2}C.{x|1≤x<2}D.{x|-1≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若f(x+$\frac{1}{x}$)=x2+$\frac{1}{x^2}$,則f(3)=7.

查看答案和解析>>

同步練習(xí)冊答案