18.設(shè)P1P2P3…Pn是圓的內(nèi)接正n邊形,O為圓心,求證:$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{0}$.

分析 分類討論,從而分偶數(shù)與奇數(shù)進行討論,從而證明.

解答 證明:①當n為偶數(shù)時,作圖如右圖,
故$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{\frac{n}{2}+1}}$=$\overrightarrow{0}$,
$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{\frac{n}{2}+2}}$=$\overrightarrow{0}$,
…,
$\overrightarrow{O{P}_{\frac{n}{2}}}$+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{0}$,
故$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{0}$;
②當n為奇數(shù)時,作圖如右圖,
取各段弧的中點,
構(gòu)造正2n邊形,由①知,
$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$+$\overrightarrow{O{Q}_{1}}$+$\overrightarrow{O{Q}_{2}}$+…+$\overrightarrow{O{Q}_{n}}$=$\overrightarrow{0}$;
又∵$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{O{Q}_{1}}$+$\overrightarrow{O{Q}_{2}}$+…+$\overrightarrow{O{Q}_{n}}$,
∴$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{O{Q}_{1}}$+$\overrightarrow{O{Q}_{2}}$+…+$\overrightarrow{O{Q}_{n}}$=$\overrightarrow{0}$;
綜上所述,
$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{0}$.

點評 本題考查了分類討論與數(shù)形結(jié)合的思想方法應(yīng)用及平面向量的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知點A(2,0),橢圓E:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,F(xiàn)是橢圓E的上焦點,直線AF的斜率為$-\frac{{\sqrt{3}}}{2}$,O為坐標原點.
(1)求E的方程;
(2)設(shè)過點A的動直線l與E相交于點P,Q兩點,當△OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF,若|$\overrightarrow{AB}$|=8,|$\overrightarrow{BF}$|=6,cos∠ABF=$\frac{3}{4}$,則C的離心率的值是6-2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)P(x,y)滿足約束條件$\left\{\begin{array}{l}{x+2y≤4}\\{x+y≤3}\end{array}\right.$,則點P對應(yīng)的區(qū)域與坐標軸圍成的封閉圖形面積為( 。
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,在△ABC中,點D是BC上一點,且$\overrightarrow{BD}$=λ$\overrightarrow{DC}$,過點D的直線分別交直線AB、AC于不同的兩點M、N,若$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AM}$,$\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{AN}$,則λ的值為(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若方程x3-3ax+2=0(a>0)有三個不同的實根,則實數(shù)a的取值范圍為( 。
A.a>0B.0<a<1C.1<a<3D.a>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),P為橢圓上與長軸端點不重合的一點,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,過F2作∠F1PF2外角平分線的垂線,垂足為Q,若|OQ|=2b,橢圓的離心率為e,則$\frac{{a}^{2}+{e}^{2}}{2b}$的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}中,a1=1,a2=3,且an+1=an+2an-1(n≥2).
(1)設(shè)bn=an+1+λan,是否存在實數(shù)λ,使數(shù)列{bn}為等比數(shù)列?若存在,求出λ的值,若不存在,請說明理由;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y-3≤0\end{array}\right.$,則z=2x+y的最小值為1.

查看答案和解析>>

同步練習冊答案