分析 (1)運(yùn)用橢圓的離心率公式和直線的斜率公式,以及a,b,c的關(guān)系,解方程可得橢圓方程;
(2)設(shè)l的方程為x=my+2,設(shè)P(x1,y1),Q(x2,y2),聯(lián)立橢圓方程,運(yùn)用韋達(dá)定理和弦長公式,判別式大于0,運(yùn)用三角形的面積公式,由基本不等式可得最大值,即可得到m,進(jìn)而得到直線方程.
解答 解:(1)由e=$\frac{{\sqrt{3}}}{2}$,可得:
${e^2}=\frac{{{a^2}-{b^2}}}{a^2}=\frac{3}{4}$,即$\frac{b^2}{a^2}=\frac{1}{4}$,
設(shè)F(0,c),則$-\frac{c}{2}=-\frac{{\sqrt{3}}}{2}$,$c=\sqrt{3}$,
又a2-b2=c2=3,
∴a2=4,b2=1,
∴E的方程是$\frac{y^2}{4}+{x^2}=1$;
(2)設(shè)l的方程為x=my+2,
設(shè)P(x1,y1),Q(x2,y2),
由$\left\{\begin{array}{l}x=my+2\\ \frac{y^2}{4}+{x^2}=1.\end{array}\right.$得(4m2+1)y2+16my+12=0,
y1+y2=-$\frac{16m}{1+4{m}^{2}}$,y1y2=$\frac{12}{1+4{m}^{2}}$,
△=(16m)2-4×12×(4m2+1)=16(4m2-3)>0,
${S_{△OPQ}}=\frac{1}{2}×2×|{{y_1}-{y_2}}|=|{{y_1}-{y_2}}|$=$\frac{{\sqrt{16(4{m^2}-3)}}}{{4{m^2}+1}}=\frac{{4\sqrt{4{m^2}-3}}}{{4{m^2}+1}}$,
令$\sqrt{4{m^2}-3}=t$,則${S_{△OPQ}}=\frac{4t}{{{t^2}+4}}=\frac{4}{{t+\frac{4}{t}}}$,
而$t+\frac{4}{t}≥4$當(dāng)且僅當(dāng)t=2,
即$m=±\frac{{\sqrt{7}}}{2}$時(shí)等號成立,此時(shí)S△OPQ≤1.
∴當(dāng)△OPQ的面積最大時(shí),求l的方程為$x=±\frac{{\sqrt{7}}}{2}y+2$,
即$2x±\sqrt{7}y-4=0$.
點(diǎn)評 本題考查橢圓方程的求法,注意運(yùn)用離心率公式和直線的斜率公式,考查直線方程的求法,注意運(yùn)用直線方程和橢圓方程聯(lián)立,由韋達(dá)定理和三角形的面積公式及基本不等式,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3\sqrt{3}}}{4}$m3 | B. | $\frac{3}{4}$m3 | C. | 1m3 | D. | $\frac{1}{2}$m3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | [-$\sqrt{2}$,$\sqrt{2}$] | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com