分析 由題意畫出圖形,利用轉(zhuǎn)化思想方法求得OQ=a,又OQ=2b,得a=2b,進(jìn)一步得到a,e與b的關(guān)系,然后利用基本不等式求得$\frac{{a}^{2}+{e}^{2}}{2b}$的最小值.
解答 解:如圖,
由題意,P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上一點(diǎn),過(guò)焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為Q,延長(zhǎng)F2Q交F1P延長(zhǎng)線于M,得PM=PF2,
由橢圓的定義知PF1+PF2=2a,故有PF1+PM=MF1=2a,
連接OQ,知OQ是三角形F1F2M的中位線,
∴OQ=a,又OQ=2b,
∴a=2b,則a2=4b2=4(a2-c2),即${c}^{2}=\frac{3}{4}{a}^{2}$,
∴$\frac{{a}^{2}+{e}^{2}}{2b}$=$\frac{{a}^{2}+\frac{{c}^{2}}{{a}^{2}}}{2b}$=$\frac{{a}^{4}+{c}^{2}}{2{a}^{2}b}=\frac{16^{4}+\frac{3}{4}•4^{2}}{8^{3}}$=$2b+\frac{3}{8b}≥2\sqrt{2b•\frac{3}{8b}}=\sqrt{3}$.
當(dāng)且僅當(dāng)$2b=\frac{3}{8b}$,即$^{2}=\frac{3}{16}$,即$b=\frac{\sqrt{3}}{4}$時(shí),$\frac{{a}^{2}+{e}^{2}}{2b}$有最小值為$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了利用基本不等式求最值,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,1] | B. | [-$\sqrt{2}$,$\sqrt{2}$] | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 6 | C. | $6\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com