9.已知復(fù)數(shù)z=$\frac{1-i}{1+i}$,$\overrightarrow{z}$是z的共軛復(fù)數(shù),則z•$\overrightarrow{z}$=( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.4D.1

分析 由條件利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),求得z的值,可得$\overline{z}$,從而求得z•$\overline{z}$的值.

解答 解:z=$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=$\frac{-2i}{2}$=-i,則$\overline{z}$=i,
則則z•$\overrightarrow{z}$=1,
故選:D.

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)基本概念,兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題正確的是(  )
A.若$\underset{lim}{n→∞}$(an•bn)=a≠0,則$\underset{lim}{n→∞}$an≠0且$\underset{lim}{n→∞}$bn≠0
B.若$\underset{lim}{n→∞}$(an•bn)=0,則$\underset{lim}{n→∞}$an=0或$\underset{lim}{n→∞}$bn=0
C.若無(wú)窮數(shù)列{an}有極限,且它的前n項(xiàng)和為Sn,則$\underset{lim}{n→∞}{S}_{n}$=$\underset{lim}{n→∞}$a1+$\underset{lim}{n→∞}$a2+…+$\underset{lim}{n→∞}$an
D.若無(wú)窮數(shù)列{an}有極限,則$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.給出下列函數(shù):
①f(x)=xsinx;
②f(x)=ex+x;
③f(x)=ln($\sqrt{1+{x}^{2}}$-x);
?a>0,使${∫}_{-a}^{a}$f(x)dx=0的函數(shù)是( 。
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知數(shù)列{an}滿足an+1+2an=0,a2=-6,則{an}的前10項(xiàng)和等于-1023.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知f(x)=sin(2x+φ)的圖象向右平移$\frac{π}{12}$個(gè)單位后得到的函數(shù)g(x)的圖象,則“函數(shù)g(x)的圖象關(guān)于點(diǎn)($\frac{π}{6}$,0)中心對(duì)稱”是“φ=-$\frac{π}{6}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.定義:若點(diǎn)M(x0,y0)在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,則點(diǎn)N($\frac{{x}_{0}}{a}$,$\frac{{y}_{0}}$)為點(diǎn)M的一個(gè)“依附點(diǎn)”.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)半軸長(zhǎng)和焦距均為2,若橢圓C的弦AB的端點(diǎn)A,B的“依附點(diǎn)”分別是P,Q,且OP⊥OQ.
(I)求橢圓C的方程;
(Ⅱ)求證:S△OAB為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.定義在R上的奇函數(shù)y=f(x)滿足f(x+2)=f(-x),則f(2008)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若正數(shù)x,y滿足x2+4y2+x+2y=1,則xy的最大值為$\frac{2-\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.命題“若p不正確,則q不正確”的等價(jià)命題是( 。
A.若q不正確,則p不正確B.若q正確,則p正確
C.若p正確,則q不正確D.若p正確,則q正確

查看答案和解析>>

同步練習(xí)冊(cè)答案