分析 法一:設(shè)函數(shù)為交點式,利用二次函數(shù)圖象的頂點到x軸的距離2,可得函數(shù)解析式;
法二:設(shè)函數(shù)為頂點式,利用函數(shù)圖象過點(1,0),可得函數(shù)解析式.
解答 解:法一:∵二次函數(shù)的圖象過點(-3,0),(1,0),
∴可設(shè)二次函數(shù)為y=a(x+3)(x-1)(a≠0),
展開,得 y=ax2+2ax-3a,
頂點的縱坐標為 $\frac{{-12{a^2}-4{a^2}}}{4a}=-4a$,
由于二次函數(shù)圖象的頂點到x軸的距離2,
∴|-4a|=2,即a=$±\frac{1}{2}$.
所以,二次函數(shù)的表達式為y=$\frac{1}{2}{x^2}+x-\frac{3}{2}$,或y=-$\frac{1}{2}{x^2}-x+\frac{3}{2}$.
法二:∵二次函數(shù)的圖象過點(-3,0),(1,0),
∴對稱軸為直線x=-1.
又頂點到x軸的距離為2,
∴頂點的縱坐標為2,或-2.
于是可設(shè)二次函數(shù)為y=a(x+1)2+2,或y=a(x+1)2-2,
由于函數(shù)圖象過點(1,0),
∴0=a(1+1)2+2,或0=a(1+1)2-2.
∴a=-$\frac{1}{2}$,或a=$\frac{1}{2}$.
所以,所求的二次函數(shù)為y=-$\frac{1}{2}$(x+1)2+2,或y=$\frac{1}{2}$(x+1)2-2.
故答案為:y=$\frac{1}{2}{x^2}+x-\frac{3}{2}$,或y=-$\frac{1}{2}{x^2}-x+\frac{3}{2}$.
點評 本題考查函數(shù)解析式的求法,解題的關(guān)鍵是正確設(shè)出函數(shù)的解析式,利用待定系數(shù)法是解決本題的關(guān)鍵..
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}+1}}{2}$ | B. | $\sqrt{3}+1$ | C. | $\frac{{\sqrt{6}}}{2}$ | D. | $\sqrt{5}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | <k<2 | B. | k≥2 | C. | 2<k≤4 | D. | 2≤k≤4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6-2$\sqrt{2}$ | B. | 6 | C. | 4+2$\sqrt{2}$ | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com