14.已知函數(shù)y=$\frac{1}{x}$,則當(dāng)自變量x由2變到1時,函數(shù)值的改變量△y=$\frac{1}{2}$.

分析 根據(jù)變化量的定義計算△y.

解答 解:當(dāng)x=2時,y=$\frac{1}{2}$,當(dāng)x=1時,y=1,∴△y=1-$\frac{1}{2}$=$\frac{1}{2}$.
故答案為$\frac{1}{2}$.

點評 本題考查了函數(shù)改變量的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤4}\\{y≥1}\end{array}\right.$,則z=$\frac{1}{2}$x+y的取值范圍為[$\frac{3}{2}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sin(ωx+φ),ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,相鄰兩對稱軸間的距離為π,若將y=f(x)的圖象向右平移$\frac{π}{6}$個單位,所得的函數(shù)y=g(x)為奇函數(shù).
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若關(guān)于x的方程2[g(x)]2-m[g(x)]+1=0在區(qū)間[0,$\frac{π}{2}$]上有兩個不相等的實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若tanα+tanβ-tanαtanβ+1=0,α,β∈($\frac{π}{2},π$),則α+β=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知長為l(l≥1)的線段AB的兩個端點在拋物線y=x2上滑動,則線段AB的中點M到x軸的距離的最小值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知扇形OAB的面積是4cm2,它的周長是8cm,求扇形的圓心角及弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=f(x)的圖形如圖所示,給出y=f(x)與x=10和x軸所圍成圖形的面積估計值;要想得到誤差不超過1的面積估計值,可以怎么做?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),求角A,B,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.底面為正六邊形的六棱錐P-ABCDE,$\overrightarrow{PG}$=$\frac{1}{2}$$\overrightarrow{GB}$,$\overrightarrow{PH}$=$\overrightarrow{HC}$,記三棱錐G-PAH的體積為V1,三棱錐H-PAE的體積為V2,則V1:V2是$\frac{1}{9}$.

查看答案和解析>>

同步練習(xí)冊答案