9.已知單位向量$\overrightarrow{a}$,$\overrightarrow$,滿足$\overrightarrow{a}$•$\overrightarrow$=0,且|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-2$\overrightarrow$|=$\sqrt{5}$,則|$\overrightarrow{c}$+2$\overrightarrow{a}$|的取值范圍是( 。
A.[1,3]B.[2$\sqrt{2}$,3]C.[$\frac{6\sqrt{5}}{5}$,2$\sqrt{2}$]D.[$\frac{6\sqrt{5}}{5}$,3]

分析 可設$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(x,y),由|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-2$\overrightarrow$|=$\sqrt{5}$,可得$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{{x}^{2}+(y-2)^{2}}$=$\sqrt{5}$,表示點(1,0)和(0,2)之間的線段,|$\overrightarrow{c}$+2$\overrightarrow{a}$|=$\sqrt{(x+2)^{2}+{y}^{2}}$,表示(-2,0)到線段AB上點的距離,運用點到直線的距離公式可得最小值,和兩點的距離公式可得最大值.即可得到所求范圍.

解答 解:可設$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(x,y),
即有$\overrightarrow{c}$-$\overrightarrow{a}$=(x-1,y),$\overrightarrow{c}$-2$\overrightarrow$=(x,y-2),由|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-2$\overrightarrow$|=$\sqrt{5}$,
可得$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{{x}^{2}+(y-2)^{2}}$=$\sqrt{5}$
即(x,y)到A(1,0)和B(0,2)的距離和為$\sqrt{5}$,
即表示點(1,0)和(0,2)之間的線段,|$\overrightarrow{c}$+2$\overrightarrow{a}$|=$\sqrt{(x+2)^{2}+{y}^{2}}$,
表示(-2,0)到線段AB上點的距離,
最小值是點(-2,0)到直線2x+y-2=0的距離|$\overrightarrow{c}$+2$\overrightarrow{a}$|min=$\frac{6}{\sqrt{5}}$=$\frac{6\sqrt{5}}{5}$,
最大值為(-2,0)到(1,0)的距離是3,
所以|$\overrightarrow{c}$+2$\overrightarrow{a}$|的取值范圍是[$\frac{6\sqrt{5}}{5}$,3].
故選:D.

點評 本題考查向量的坐標運算,考查兩點的距離公式和點到直線的距離公式,向量模的幾何意義,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,m),且$\overrightarrow{a}$⊥$\overrightarrow$,則2$\overrightarrow{a}$+3$\overrightarrow$=(-4,7).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-2x+5,$x∈[-2,\frac{1}{2}]$.
(1)是否存在實數(shù)m,使不等式m+f(x)>0對于x∈[-2,$\frac{1}{2}$]恒成立,并說明理由;
(2)若至少存在一個實數(shù)x0,使不等式m-f(x0)>0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=|x-2a|+|x-a|,x∈R,a≠0
(1)當a=1時,解不等式:f(x)>2
(2)若b∈R,證明:f(b)≥f(a),并求在等號成立時$\frac{a}$的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知a,b∈R,且a+2b=4,則$\sqrt{3}$a+3b的最小值為( 。
A.2$\sqrt{3}$B.6C.3$\sqrt{3}$D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$,則以點$A(2,\frac{3}{2})$為中點的弦所在直線的方程為( 。
A.8x-6y-7=0B.3x+4y=0C.3x+4y-12=0D.4x-3y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設x0是函數(shù)f(x)=2x+x的零點,且x0∈(k,k+1),k∈Z,則k=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設等比數(shù)列{an}的前n項和為Sn,若a3=2a4=2,則S6等于(  )
A.31B.$\frac{31}{2}$C.$\frac{63}{4}$D.$\frac{127}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.某時鐘的秒針端點A到中心點O的距離為10cm,秒針均勻地繞點O旋轉.記鐘面上數(shù)字12處為B點,當時間t=0時,點A與鐘面上點B重合,將A,B兩點的距離d(cm)表示成t(s)的函數(shù).則d=20sin$\frac{πt}{60}$,其中t∈[0,60].

查看答案和解析>>

同步練習冊答案