18.已知a>0,b>0,若a+b=1,則$\frac{1}{2a+1}+\frac{4}{2b+1}$的最小值是$\frac{9}{4}$.

分析 a>0,b>0,a+b=1,可得:2a+1+2b+1=4.則$\frac{1}{2a+1}+\frac{4}{2b+1}$=$\frac{1}{4}$(2a+1+2b+1)$(\frac{1}{2a+1}+\frac{4}{2b+1})$,展開利用基本不等式的性質(zhì)即可得出.

解答 解:∵a>0,b>0,a+b=1,∴2a+1+2b+1=4.
則$\frac{1}{2a+1}+\frac{4}{2b+1}$=$\frac{1}{4}$(2a+1+2b+1)$(\frac{1}{2a+1}+\frac{4}{2b+1})$=$\frac{1}{4}(5+\frac{2b+1}{2a+1}+\frac{4(2a+1)}{2b+1})$≥$\frac{1}{4}$$(5+2\sqrt{\frac{2b+1}{2a+1}•\frac{4(2a+1)}{2b+1}})$=$\frac{9}{4}$,當(dāng)且僅當(dāng)$a=\frac{1}{6}$,b=$\frac{5}{6}$時取等號.
故答案為:$\frac{9}{4}$.

點評 本題考查了基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^3}+1,x≥0}\\{{x^2}+2,x<0}\end{array}}\right.$,若f(x)=1,則x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知平面向量$\overrightarrow{i}$,$\overrightarrow{j}$是單位向量,且$\overrightarrow{i}$•$\overrightarrow{j}$=$\frac{1}{2}$,若平面向量$\overrightarrow{a}$滿足:$\overrightarrow{a}$•$\overrightarrow{i}$=$\overrightarrow{a}$•$\overrightarrow{j}$=$\sqrt{3}$,則|$\overrightarrow{a}$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{n}$=1(0<n<16)的兩個焦點分別為F1,F(xiàn)2,過F1的直線交橢圓C于A,B兩點,若|AF2|+|BF2|的最大值為10,則n的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某學(xué)校食堂早餐只有花卷、包子、面條和蛋炒飯四種主食可供食用,有5名同學(xué)前去就餐,每人只選擇其中一種,且每種主食都至少有一名同學(xué)選擇.已知包子數(shù)量不足僅夠一人食用,甲同學(xué)腸胃不好不會選擇蛋炒飯,則這5名同學(xué)不同的主食選擇方案種數(shù)為( 。
A.144B.132C.96D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等腰直角△ABC中,AB=AC=$\sqrt{2}$,D、E是線段BC上的點,且DE=$\frac{1}{3}$BC,則$\overrightarrow{AD}$•$\overrightarrow{AE}$的取值范圍是[$\frac{8}{9},\frac{4}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知雙曲線x2-$\frac{{y}^{2}}{4}$=1,過點P(1,1)能否做一條直線l,與雙曲線交于A,B兩點,且點P是線段AB的中點?若能,求出直線l的方程,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若復(fù)數(shù)滿足(3-4i)z=|4+3i|,i是虛數(shù)單位,則z的虛部為( 。
A.-4B.$\frac{4}{5}$C.4D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.判斷下列問題是否為排列可題.
(1)選2個小組分別去植樹和種菜;
(2)選2個小組種菜;
(3)選10人組成一個學(xué)習(xí)小組;
(4)從1,2,3,4,5中任取兩個數(shù)相除;
(5)10個車站,站與站間的車票.

查看答案和解析>>

同步練習(xí)冊答案