分析 利用誘導公式,同角三角函數(shù)基本關系式化簡證明左邊=$\frac{tanθ+1}{tanθ-1}$=右邊,即可得證.
解答 證明:∵左邊=$\frac{2sin(θ-\frac{3π}{2})cos(θ+\frac{π}{2})-1}{1-2co{s}^{2}(θ+\frac{3}{2}π)}$=$\frac{-2cosθsinθ-1}{cos2θ}$=-$\frac{sin2θ+1}{cos2θ}$=-$\frac{\frac{2tanθ}{1+ta{n}^{2}θ}+1}{\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}}$=$\frac{(1+tanθ)^{2}}{(tanθ+1)(tanθ-1)}$=$\frac{tanθ+1}{tanθ-1}$,
右邊=$\frac{tan(9π+θ)+1}{tan(π+θ)-1}$=$\frac{tanθ+1}{tanθ-1}$.
∴左邊=右邊,得證.
點評 本題主要考查了誘導公式,同角三角函數(shù)基本關系式在三角函數(shù)的化簡求值中的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆重慶市高三理上適應性考試一數(shù)學試卷(解析版) 題型:選擇題
已知數(shù)列的前項和為,且滿足,若,則的前2017項的積為( )
A.1 B.2 C.-6 D.-586
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com