分析 (1)f′(x)=ex(-x2-2x+b).由點P(0,f(0))處的切線方程為y=3x+3.可得f(0)=3,f′(0)=3.解得b,可得函數(shù)f(x)的表達式;
(2)由f′(x)<0,f′(x)>0解出可得函數(shù)f(x)的單調(diào)遞減、增區(qū)間,即可求出極值點.
解答 解:(1)f′(x)=ex(-x2-2x+b).
∵點P(0,f(0))處的切線方程為y=3x+3.
∴f(0)=3,f′(0)=3.
∴b=3,
∴f(x)=ex(-x2+3).
(2)f′(x)=ex(-x2-2x+3)=-ex(x+3)(x-1),
由f′(x)<0,化為(x+3)(x-1)>0,解得x>1或x<-3,
∴函數(shù)f(x)的單調(diào)遞減區(qū)間為(-∞,-3),(1,+∞);單調(diào)遞增區(qū)間是(-3,1)
∴極值點為-3,1.
點評 本題考查了利用導(dǎo)數(shù)研究其單調(diào)性、極值,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆重慶市高三理上適應(yīng)性考試一數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)橢圓的方程為,為坐標原點,直線與橢圓交于點為線段的中點.
(1)若分別為的左頂點和上頂點,且的斜率為,求的標準方程;
(2)若,且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南石門縣一中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題
如圖,公園有一塊邊長為的等邊的邊角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,在上,在上.
(1)設(shè)(),,求用表示的函數(shù)關(guān)系式;
(2)如果是灌溉水管,為節(jié)約成本,希望它最短,的位置應(yīng)在哪里?如果是參觀線路,則希望它最長,的位置又應(yīng)在哪里?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com