分析 由意ξ的取值為0,1,2分別求出相應(yīng)的概率,從而得到ξ的分布列,由此能求出ξ的期望值E(ξ)和方差V(ξ).
解答 解:由意ξ的取值為0,1,2,
P(ξ=0)=$\frac{{C}_{2}^{0}{C}_{13}^{3}}{{C}_{15}^{3}}$=$\frac{22}{35}$,
P(ξ=1)=$\frac{{C}_{2}^{1}{C}_{13}^{2}}{{C}_{15}^{3}}$=$\frac{12}{35}$,
P(ξ=2)=$\frac{{C}_{2}^{2}{C}_{13}^{1}}{{C}_{15}^{3}}$=$\frac{1}{35}$,
故ξ的分布列為:
ξ | 0 | 1 | 2 |
P | $\frac{22}{35}$ | $\frac{12}{35}$ | $\frac{1}{35}$ |
點評 本題考查概率的求法,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望、方差的求法,是中檔題,解題時要認(rèn)真審題,注意排列組合知識的合理運(yùn)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x*y=x1y1+2x2y2 | B. | x*y=x1y1-x2y2 | C. | x*y=x1y1+x2y2+1 | D. | x*y=2x1x2+y1y2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com