19.在△ABC中,已知AC=2,BC=3,cosA=-$\frac{4}{5}$,則sin(2B+$\frac{π}{6}$)=$\frac{17+12\sqrt{7}}{25}$.

分析 由條件利用同角三角的基本關(guān)系求得sinA的值,利用正弦定理求得sinB的值,可得cosB的值,利用二倍角公式求得sin2B、cos2B的值,再利用兩角和的正弦公式,求得要求式子的值.

解答 解:△ABC中,∵已知AC=2,BC=3,cosA=-$\frac{4}{5}$∈($\frac{3π}{4}$,π),∴B∈(0,$\frac{π}{4}$),
∴sinA=$\sqrt{{1-cos}^{2}A}$=$\frac{3}{5}$,則由正弦定理可得$\frac{BC}{sinA}$=$\frac{3}{\frac{3}{5}}$=$\frac{2}{sinB}$,
∴sinB=$\frac{2}{5}$,cosB=$\sqrt{{1-sin}^{2}B}$=$\frac{\sqrt{21}}{5}$,∴sin2B=2sinBcosB=$\frac{4\sqrt{21}}{25}$,∴cos2B=1-2sin2B=$\frac{17}{25}$,
sin(2B+$\frac{π}{6}$)=sin2Bcos$\frac{π}{6}$+cos2Bsin$\frac{π}{6}$=$\frac{4\sqrt{21}}{25}$•$\frac{\sqrt{3}}{2}$+$\frac{17}{25}$•$\frac{1}{2}$=$\frac{17+12\sqrt{7}}{50}$,
故答案為:$\frac{17+12\sqrt{7}}{50}$.

點評 本題主要考查同角三角的基本關(guān)系,正弦定理,二倍角公式,兩角和的正弦公式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知F、A分別為雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點和右頂點,過F作x軸的垂線在第一象限與雙曲線交于點P,AP的延長線與雙曲線在第一象限的漸近線交于點Q,若$\overrightarrow{AP}$=(2-$\sqrt{2}}$)$\overrightarrow{AQ}$,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知復(fù)數(shù)z=1+2i,則復(fù)數(shù)$\frac{1}{z}$在復(fù)平面內(nèi)對應(yīng)的點位于第四象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.“m<$\frac{1}{2}$”是“關(guān)于x的一元二次方程x2+x+m=0有實數(shù)解”的必要不充分條件(從“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中選一個)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知過點P(1,-1)的直線l與x軸正半軸,y軸負半軸分別交于C,D兩點,O為坐標原點,若△OCD的面積為2,則直線l方程為x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.圓x2+y2-8x+6y+16=0與圓x2+y2=64的位置關(guān)系是( 。
A.相交B.內(nèi)切C.相離D.外切

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設(shè)在15個同類型的零件中有2個是次品,每次任取1個,共取3次,并且取出不再放回,若以ξ表示取出次品的個數(shù),ξ的期望值E(ξ)和方差V(ξ)分別為$\frac{2}{5}$,$\frac{52}{175}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知三棱錐P-ABC中,△ABC為等邊三角形,PA=PB=PC,PA⊥PB,點P到平面ABC的距離為2$\sqrt{3}$,則三棱錐P-ABC的體積為36.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.過拋物線C:y2=2px(p>0)的焦點F且傾斜角為45°的直線交C于A,B兩點,若以AB為直徑的圓被x軸截得的弦長為16$\sqrt{3}$,則p的值為( 。
A.8B.8$\sqrt{3}$C.12D.16

查看答案和解析>>

同步練習冊答案