20.圓心與拋物線y2=4x的焦點(diǎn)重合,且被拋物線準(zhǔn)線截得的弦長(zhǎng)為4的圓的標(biāo)準(zhǔn)方程為( 。
A.(x-1)2+y2=4B.(x-2)2+y2=4C.(x-1)2+y2=8D.(x-2)2+y2=8

分析 由拋物線方程求出焦點(diǎn)坐標(biāo),即要求圓的圓心坐標(biāo),再由垂徑定理求得半徑,則圓的方程可求.

解答 解:由y2=4x,得2p=4,p=2,
∴拋物線y2=4x的焦點(diǎn)坐標(biāo)為F(1,0),
如圖,設(shè)拋物線的準(zhǔn)線交x軸于D,
由題意可知,DB=2,又DF=2,
∴r2=BF2=22+22=8.
則所求圓的標(biāo)準(zhǔn)方程為(x-1)2+y2=8.
故選:C.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程,考查了拋物線的簡(jiǎn)單性質(zhì),考查數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=exsinx,x∈[0,π],則(  )
A.x=$\frac{π}{2}$為f(x)的極小值點(diǎn)B.x=$\frac{π}{2}$為f(x)的極大值點(diǎn)
C.x=$\frac{3π}{4}$為f(x)的極小值點(diǎn)D.x=$\frac{3π}{4}$為f(x)的極大值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.等差數(shù)列{an}中的a3,a2015是函數(shù)f(x)=x3-9x2+8x-1的極值點(diǎn),則log${\;}_{\frac{1}{3}}$a1009=( 。
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知?jiǎng)狱c(diǎn)M到點(diǎn)(8,0)的距離是M到點(diǎn)(2,0)的距離的兩倍,其軌跡與圓x2+y2-8x-8y+16=0相交于A,B兩點(diǎn),則線段AB的長(zhǎng)度是( 。
A.4$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{14}$D.2$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知不等式(ax+3)(x2-b)≤0對(duì)任意x∈(0,+∞)恒成立,其中a,b是整數(shù),則a+b的取值的集合為{-2,8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知兩個(gè)單位向量$\overrightarrow{a}$,$\overrightarrow$的夾角為30°,$\overrightarrow{c}$=$\sqrt{3}$t$\overrightarrow{a}$+(1-t)$\overrightarrow$,若$\overrightarrow$•$\overrightarrow{c}$=0,則t=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.有一個(gè)長(zhǎng)為10米的木棒斜插在地面上,點(diǎn)P是地面內(nèi)的一個(gè)動(dòng)點(diǎn),若點(diǎn)P與木棒的兩個(gè)端點(diǎn)構(gòu)成的三角形面積為定值,則點(diǎn)P的軌跡為( 。
A.橢圓B.C.兩條平等直線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和Sn滿足Sn=$\frac{1}{6}$(${a_n}^2$+3an-4),則Sn=$\frac{3}{2}$n2+$\frac{5}{2}n$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,已知圓C:(x-4)2+(y-3)2=4,點(diǎn)A、B在圓C上,且|AB|=2$\sqrt{3}$,則|$\overrightarrow{OA}$+$\overrightarrow{OB}$|的最小值是8.

查看答案和解析>>

同步練習(xí)冊(cè)答案