4.已知等比數(shù)列{an}滿足a3•a5=100,則a4=( 。
A.±10B.-10C.10D.$\sqrt{10}$

分析 由等比數(shù)列的性質(zhì)得a3•a5=${{a}_{4}}^{2}$,由此能求出結(jié)果.

解答 解:∵等比數(shù)列{an}滿足a3•a5=100,
∴a3•a5=${{a}_{4}}^{2}$=100,
解得a4=±10.
故選:A.

點(diǎn)評(píng) 本題考查等比數(shù)列中第4項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.函數(shù)f(x)=x2-2ax(0≤x≤1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.過(guò)點(diǎn)(2,0)且與直線x-2y+2=0平行的直線方程是( 。
A.x-2y+1=0B.2x+y-2=0C.x-2y-2=0D.x+2y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C1的中心和拋物線C2的頂點(diǎn)都在坐標(biāo)原點(diǎn)O,C1和C2有公共焦點(diǎn)F,點(diǎn)F在x軸正半軸上,且C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)及點(diǎn)F到直線x=$\frac{{a}^{2}}{c}$的距離成等比數(shù)列.
(Ⅰ)當(dāng)C2的準(zhǔn)線與直線x=$\frac{{a}^{2}}{c}$的距離為15時(shí),求C1及C2的方程;
(Ⅱ)設(shè)點(diǎn)F且斜率為1的直線l交C1于P,Q兩點(diǎn),交C2于M,N兩點(diǎn).當(dāng)$|PQ|=\frac{36}{7}$時(shí),求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A={x|x2+3x+2=0},B={x|ax≥1,a<0}
(1)當(dāng)a=-$\frac{1}{2}$時(shí),求A∩B;
(2)當(dāng)A⊆B時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)$a={2^{\frac{1}{2}}}$,$b={log_{\frac{1}{2}}}2$,c=log24,則( 。
A.a<b<cB.b<c<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.直線l過(guò)點(diǎn)(0,-1),且與直線3x-y+2=0平行,則直線l方程為3x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.滿足48-x>4-2x的x的取值集合是(-8,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=cosx,x∈($\frac{π}{2}$,3π),若方程f(x)=m有三個(gè)不同的實(shí)數(shù)根,且三個(gè)根α,β,γ(按從小到大排列)滿足β2=αγ,則實(shí)數(shù)m的值可能是-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案