A. | (-∞,-4) | B. | (-1,0) | C. | (-4,0) | D. | (-1,+∞) |
分析 分x=0,0<x≤2,-1≤x<0三種情況進(jìn)行討論,分離出參數(shù)a后轉(zhuǎn)化為函數(shù)求最值即可,利用導(dǎo)數(shù)即可求得函數(shù)最值,注意最后要對a取交集.
解答 解:當(dāng)x=0時,不等式ax3-x2+2x-1<0對任意a∈R恒成立;
當(dāng)0<x≤2時,ax3-x2+2x-1<0可化為a<$\frac{1}{x}$-$\frac{2}{{x}^{2}}$+$\frac{1}{{x}^{3}}$,
令f(x)=$\frac{1}{x}$-$\frac{2}{{x}^{2}}$+$\frac{1}{{x}^{3}}$,
則f′(x)=-$\frac{1}{{x}^{2}}$+$\frac{4}{{x}^{3}}$-$\frac{3}{{x}^{4}}$=$\frac{4x-3-{x}^{2}}{{x}^{4}}$=$\frac{-(x-3)(x-1)}{{x}^{4}}$,
當(dāng)0<x≤1時,f′(x)<0,f(x)在(0,1]上單調(diào)遞減,
1<x<2時,f′(x)>0,f(x)在(1,2)上單調(diào)遞增,
f(x)min=f(1)=0,∴a<0;
當(dāng)-1≤x<0時,ax3-x2+2x-1<0可化為a>$\frac{1}{x}$-$\frac{2}{{x}^{2}}$+$\frac{1}{{x}^{3}}$,
由f(x)=$\frac{1}{x}$-$\frac{2}{{x}^{2}}$+$\frac{1}{{x}^{3}}$,f′(x)=$\frac{-(x-3)(x-1)}{{x}^{4}}$,
當(dāng)-1≤x<0時,f′(x)<0,f(x)單調(diào)遞減,
f(x)max=f(-1)=-2,∴a>-4.
綜上所述,實數(shù)a的取值范圍是-4<a<0,
即實數(shù)a的取值范圍是(-4,0).
故選:C.
點評 本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查轉(zhuǎn)化思想、分類與整合思想,按照自變量討論,最后要對參數(shù)范圍取交集.若按照參數(shù)討論則取交集,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,1) | C. | (1,2) | D. | (2,e) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sin($\frac{π}{3}$)<0 | B. | cos(-80°)<0 | C. | tan200°>0 | D. | cos0°=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com