1.某個游戲中,一個珠子按如圖所示的通道,由上至下的滑下,從最下面的六個出口出來,規(guī)定猜中者為勝,如果某人在該游戲中,猜得珠子從3號口出來,那么他取勝的概率為$\frac{5}{16}$.

分析 我們把從頂點A到3的路線圖單獨畫出來:分析可得從A到3總共有5個岔口,每一岔口走法的概率都是$\frac{1}{2}$,而從A到3總共有C52=10種走法,計算可得答案.

解答 解:我們把從頂點A到3的路線圖單獨畫出來:

分析可得,
從頂點A到3總共有C52=10種走法,每一種走法的概率都是$\frac{1}{2}$,
∴珠子從出口3出來是${C}_{5}^{2}$($\frac{1}{2}$)5=$\frac{5}{16}$.

點評 本題是二項分布的一個模型,下面第n層第i個出口對應(yīng)的概率是 ${C}_{n}^{i-1}$($\frac{1}{2}$)n,i=1,2,…,n,代入計算即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式${(\frac{1}{2})^{2{x^2}+x-1}}$>1的解集是(-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知tan($\frac{π}{4}$+α)=1,則$\frac{2sinα+cosα}{3cosα-sinα}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)y=x+$\frac{1}{x-2}$(x>2).當(dāng)x=a時,y有最小值,則a的值是( 。
A.4B.3C.1+$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知隨機變量ξ服從正態(tài)分布 N(2,σ2),P(ξ≥4)=0.16,則 P(ξ≤0)=( 。
A.0.16B.0.32C.0.68D.0.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知Sn為等差數(shù)列{an}的前n項和,若S3+S7=37,則19a3+a11=( 。
A.47B.73C.37D.74

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.拋物線C1:y2=2px(p>0),圓C2:(x-1)2+y2=1,拋物線C1上只有頂點在圓C2上,其他點均在圓C2的外面.
(1)求p的取值范圍;
(2)過拋物線C1上一定點M(x0,y0)(y0>0),作兩條直線分別交拋物線于A(x1,y1),B(x2,y2),當(dāng)MA與MB的斜率存在且傾斜角互補時,證明直線AB的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}中,a1=2,an+1=3an+3n
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn,求證:Sn≥2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個盒子中放有大小相同的6個小球,其中白球4個,紅球2個.任取兩次,每次取一個球,每次取后不放回,已知第一次取到的是白球,則第二次也取到的是白球的概率為( 。
A.$\frac{3}{5}$B.$\frac{5}{12}$C.$\frac{2}{3}$D.$\frac{7}{9}$

查看答案和解析>>

同步練習(xí)冊答案