分析 當(dāng)t=0時(shí),y=0,且-2≤x≤2;當(dāng)t≠0時(shí),cosθ=$\frac{x}{{2}^{t}+{2}^{-t}}$,sinθ=$\frac{y}{{2}^{t}-{2}^{-t}}$,由此利用同角三角函數(shù)關(guān)系能求出普通方程.
解答 C.(選修4-4:坐標(biāo)系與參數(shù)方程)
解:∵參數(shù)方程$\left\{\begin{array}{l}{x=({2}^{t}+{2}^{-t})cosθ}\\{y=({2}^{t}-{2}^{-t})sinθ}\end{array}\right.$(θ 為參數(shù),t 為常數(shù)),
∴當(dāng)t=0時(shí),y=0,x=2cosθ,即y=0,且-2≤x≤2.…(2分)
當(dāng)t≠0時(shí),cosθ=$\frac{x}{{2}^{t}+{2}^{-t}}$,sinθ=$\frac{y}{{2}^{t}-{2}^{-t}}$,…(6分)
∴$\frac{{x}^{2}}{({2}^{t}+{2}^{-t})^{2}}+\frac{{y}^{2}}{({2}^{t}-{2}^{-t})^{2}}$=1.…(10分)
點(diǎn)評(píng) 本題考查參數(shù)方程化為普通方程等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[17.5,20) | 10 | 0.05 |
[20,225) | 50 | 0.25 |
[22.5,25) | a | b |
[25,27.5) | 40 | c |
[27.5,30] | 20 | 0.10 |
合計(jì) | N | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -4 | C. | $-\frac{14}{3}$ | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $arctan(-\frac{1}{2})$ | B. | arctan(-2) | C. | $π-arctan\frac{1}{2}$ | D. | π-arctan2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com