【題目】已知函數(shù) (x∈R).
(1)求函數(shù)f(x)的值域;
(2)①判斷函數(shù)f(x)的奇偶性;②用定義判斷函數(shù)f(x)的單調(diào)性;
(3)解不等式f(1﹣m)+f(1﹣m2)<0.
【答案】
(1)解:∵ ,
又2x>0,∴﹣1<y<1
∴函數(shù)f(x)的值域?yàn)椋ī?,1)
(2)解:明:①∵ ,
∴函數(shù)f(x)為奇函數(shù)
② =
在定義域中任取兩個(gè)實(shí)數(shù)x1,x2,且x1<x2,
則
∵x1<x2,∴0< ,
從而f(x1)﹣f(x2)<0
∴函數(shù)f(x)在R上為單調(diào)增函數(shù)
(3)解:由(2)得函數(shù)f(x)為奇函數(shù),在R上為單調(diào)增函數(shù)
∴f(1﹣m)+f(1﹣m2)<0即f(1﹣m)<﹣f(1﹣m2),
∴f(1﹣m)<f(m2﹣1),1﹣m<m2﹣1
∴原不等式的解集為(﹣∞,﹣2)∪(1,+∞)
【解析】(1)先由原函數(shù)式反解出2x , 再利用2x的取值范圍建立關(guān)于y的不等關(guān)系,解不等式即可;(2)分別利用函數(shù)奇偶性和單調(diào)性的定義求解即可,對(duì)于奇偶性的判斷,只須考慮f(﹣x)與f(x)的關(guān)系即得;對(duì)于單調(diào)性的證明,先在定義域中任取兩個(gè)實(shí)數(shù)x1 , x2 , 且x1<x2 , 再比較f(x1)﹣f(x2)即可;(3)先依據(jù)函數(shù)y=f(x)在R上單調(diào)性化掉符號(hào):“f”,將問(wèn)題轉(zhuǎn)化為關(guān)于m的整式不等式,再利用一元二次不等式的解法即可求得m的取值范圍.
【考點(diǎn)精析】利用函數(shù)的值域和函數(shù)單調(diào)性的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的;函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過(guò)點(diǎn)D作AC的平行線(xiàn)DE,交BA的延長(zhǎng)線(xiàn)于點(diǎn)E.求證:
(1)△ABC≌△DCB;
(2)DEDC=AEBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面底面,且,設(shè)分別為的中點(diǎn).
(1)求證:平面;
(2)求證:面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中, 與平面及平面所成角分別為, , 分別為與的中點(diǎn),且.
(1)求證: 平面;
(2)求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn),過(guò)作直線(xiàn), ,線(xiàn)段的垂直平分線(xiàn)與交于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)若點(diǎn)是直線(xiàn)上兩個(gè)不同的點(diǎn),且的內(nèi)切圓方程為,直線(xiàn)的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2|x﹣m|﹣1(m為實(shí)數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《太陽(yáng)的后裔》是第一部中國(guó)與韓國(guó)同步播出的韓劇,愛(ài)奇藝視頻網(wǎng)站在某大學(xué)隨機(jī)調(diào)查了110名學(xué)生,得到如表列聯(lián)表:由表中數(shù)據(jù)算得K2的觀(guān)測(cè)值k≈7.8,因此得到的正確結(jié)論是( )
女 | 男 | 總計(jì) | |
喜歡 | 40 | 20 | 60 |
不喜歡 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
(K2≥k) | 0.100 | 0.010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
附表:K2= .
A.有99%以上的把握認(rèn)為“喜歡該電視劇與性別無(wú)關(guān)”
B.有99%以上的把握認(rèn)為“喜歡該電視劇與性別有關(guān)”
C.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
D.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面內(nèi),點(diǎn)到曲線(xiàn)上的點(diǎn)的距離的最小值稱(chēng)為點(diǎn)到曲線(xiàn)的距離,在平面直角坐標(biāo)系中,已知圓: 及點(diǎn),動(dòng)點(diǎn)到圓的距離與到點(diǎn)的距離相等,記點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)過(guò)原點(diǎn)的直線(xiàn)(不與坐標(biāo)軸重合)與曲線(xiàn)交于不同的兩點(diǎn),點(diǎn)在曲線(xiàn)上,且,直線(xiàn)與軸交于點(diǎn),設(shè)直線(xiàn)的斜率分別為,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com