5.函數(shù)f(x)=$\sqrt{{{log}_{\frac{3}{4}}}(2x-1)}$的定義域?yàn)?(\frac{1}{2},1]$.

分析 根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出函數(shù)的定義域即可.

解答 解:由題意得:
0<2x-1≤1,
解得:$\frac{1}{2}$<x≤1,
故答案為:$(\frac{1}{2},1]$.

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域問(wèn)題,考查對(duì)數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某公園有一個(gè)直角三角形地塊,現(xiàn)計(jì)劃把它改造成一塊矩形和兩塊三角形區(qū)域.如圖,矩形區(qū)域用于娛樂(lè)城設(shè)施的建設(shè),三角形BCD區(qū)域用于種植甲種觀賞花卉,三角形CAE區(qū)域用于種植乙種觀賞花卉.已知OA=4千米,OB=3千米,∠AOB=90°,甲種花卉每平方千米造價(jià)1萬(wàn)元,乙種花卉每平方千米造價(jià)4萬(wàn)元,設(shè)OE=x千米.試建立種植花卉的總造價(jià)為y(單位:萬(wàn)元)關(guān)于x的函數(shù)關(guān)系式;求x為何值時(shí),種植花卉的總造價(jià)最小,并求出總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}x(x+1)\;,\;\;\;x>0\\ x(x-1)\;,\;\;\;\;x<0\end{array}$.則f(f(-1))=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=f(x)的圖象與直線x=1的交點(diǎn)有幾個(gè)(  )
A.1B.0C.0或1D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=ax-1+3(a>0,且a≠1)的圖象一定過(guò)定點(diǎn)(1,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題的敘述:
①若p:?x>0,x2-x+1>0,則¬p:?x0≤0,x02-x0+1≤0;
 ②三角形三邊的比是3:5:7,則最大內(nèi)角為$\frac{2}{3}$π;
③若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$;
 ④ac2<bc2是a<b的充分不必要條件,
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且$\sqrt{3}$bsinA+acosB-2a=0.
(1)求∠B的大。
(2)若b=$\sqrt{3}$,△ABC的面積為$\frac{\sqrt{3}}{2}$,求a,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)已知a,b是常數(shù),且a>0,b>0,a≠b,x,y∈(0,+∞),且x+y=m.
求證:$\frac{a^2}{x}$+$\frac{b^2}{y}$≥$\frac{{{{(a+b)}^2}}}{m}$,并指出等號(hào)成立的條件;
(2)求函數(shù)f(x)=$\frac{12}{x}$+$\frac{9}{1-3x}$,x∈(0,$\frac{1}{3}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知:四棱錐P-ABCD的底面為正方形,PA⊥底面ABCD,E、F分別為AB、PD的中點(diǎn),PA=a,∠PDA=45°
(1)求證:AF∥平面PCE;  
(2)求證:平面PCE⊥平面PCD;
(3)求點(diǎn)D到平面PCE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案