8.求直線y=-$\sqrt{3}$(x-2)繞點(2,0)按逆時針方向旋轉(zhuǎn)30°所得的直線方程.

分析 由題意可得已知直線的傾斜角,進而可得要求直線的傾斜角,可得斜率,可得直線方程.

解答 解:∵直線y=-$\sqrt{3}$(x-2)的斜率為-$\sqrt{3}$,傾斜角為120°,
∴直線y=-$\sqrt{3}$(x-2)繞點(2,0)按逆時針方向旋轉(zhuǎn)30°所得的直線傾斜角為150°,
∴直線的斜率k=tan150°=-$\frac{\sqrt{3}}{3}$,故直線方程為y-0=-$\frac{\sqrt{3}}{3}$(x-2),
整理為一般式可得x+$\sqrt{3}$y-2=0

點評 本題考查兩直線的夾角,涉及直線的傾斜角和斜率的關(guān)系,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,在矩形ABCD中,AB=5,BC=4,E為DC上一點,且DE=3.沿AE將△ADE折起,得到一個四棱錐D-ABCE.如圖2,F(xiàn)為DB上一點,且CF∥平面DAE.
(1)求CF的長;
(2)若DB=3,求四棱錐D-ABCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)f(z)=$\overline{z}$,且z1=1+5i,z2=-3+2i.則f$\overline{({z}_{1}-{z}_{2})}$的值是( 。
A.-2+3iB.-2-3iC.4-3iD.4+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=sin(2x-$\frac{π}{4}$)(0≤x<π)的單調(diào)增區(qū)間為[0,$\frac{3π}{8}$],[$\frac{7π}{8}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.下圖為函數(shù)y=Asin(ωx+φ)的一段圖象,已知A>0,ω>0,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)寫出函數(shù)y的解析式;
(2)若函數(shù)y=g(x)與y=Asin(ωx+φ)的圖象關(guān)于直線x=2對稱,求y=g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知M(x,y)是以A(-2,3),B(3,2)為端點的線段上一動點,則$\frac{y-1}{x+1}$的取值范圍為( 。
A.[-2,$\frac{1}{4}$]B.(-∞,-2]C.(-∞,2]∪[$\frac{1}{4}$,+∞)D.[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.用反正弦形式表示下列各角.
(1)sinx=-$\frac{1}{4}$,x∈(π,$\frac{3π}{2}$);
(2)sinx=a,a∈(-1,0),x∈[π,2π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\overrightarrow a=(cosx,-2),\overrightarrow b=(sinx,1)$且$\overrightarrow a$∥$\overrightarrow b$,則sin2x=( 。
A.$-\frac{4}{5}$B.-3C.3D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在平面直角坐標(biāo)系中,一束光線從點M(-2,3)出發(fā),被直線y=x-1反射后到達點N(1,6),則這束光線從M到N所經(jīng)過的路程為( 。
A.10$\sqrt{3}$B.3$\sqrt{10}$C.2$\sqrt{10}$D.3$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案