9.設(shè)變量x,yi滿足約束條件$\left\{\begin{array}{l}{x-y+3≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,則z=x+2y的最大值為( 。
A.21B.15C.-3D.-15

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值.

解答 解:作出不等式對(duì)應(yīng)的平面區(qū)域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直線y=-$\frac{1}{2}x+\frac{z}{2}$,由圖象可知當(dāng)直線y=-$\frac{1}{2}x+\frac{z}{2}$經(jīng)過(guò)點(diǎn)B時(shí),
直線y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此時(shí)z最大.
由$\left\{\begin{array}{l}{x-y+3=0}\\{x=3}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=6}\end{array}\right.$,
即B(3,6),
此時(shí)z的最大值為z=3+2×6=15,
故選:B.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.計(jì)算:${∫}_{0}^{1}$(x3cosx)dx=6-5sin1-3cos1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知實(shí)數(shù)x,y>0且xy=2,則$\frac{{x}^{3}+8{y}^{3}}{{x}^{2}+4{y}^{2}+8}$的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知a,b,c是方程x3+Ax2+Bx-1=0的3個(gè)解,求值:$\frac{a}{ab+a+1}+\frac{bc+b+1}+\frac{c}{ca+c+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知圓C:x2+y2=1,點(diǎn)M(t,2),若C上存在兩點(diǎn)A、B滿足$\overrightarrow{MA}$=$\overrightarrow{AB}$,則t的取值范圍是(  )
A.[-2,2]B.[-$\sqrt{5}$,$\sqrt{5}$]C.[-3,3]D.[-5,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-6x+6,x≥0}\\{x+4,x<0}\end{array}\right.$,若存在互不相等的實(shí)數(shù)x1,x2,x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍(-1,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)a=-1,b=2log3m,那么“a=b”是“$m=\frac{{\sqrt{3}}}{3}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知關(guān)于x的不等式ax2-(a+1)x+1<0.
(1)若a=-3,求不等式的解集;
(2)若a∈R,求不等式的解集;
(3)若不等式解集中恰有4個(gè)整數(shù)解,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}滿足:a1=1,nan+1=2(n+1)an+n(n+1+(n∈N*).
(1)若bn=$\frac{{a}_{n}}{n}$+1,試證明數(shù)列{bn}為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式an及其n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案